×
10.04.2015
216.013.3b54

Результат интеллектуальной деятельности: ИНТЕНСИФИЦИРОВАННАЯ ИСПАРИТЕЛЬНАЯ СИСТЕМА ОХЛАЖДЕНИЯ СВЕТОДИОДНОГО МОДУЛЯ

Вид РИД

Изобретение

№ охранного документа
0002546676
Дата охранного документа
10.04.2015
Аннотация: Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов. Достигается тем, что интенсифицированная испарительная система охлаждения светодиодного модуля состоит из высокотеплопроводного основания, выполненного из металла, металлокерамики или материала, имеющего структуру изолированных проводников внутри металла, с установленными на нем светодиодами, к которому примыкает наполнитель из микропористого материала с миниканалами, расположенными под светодиодами перпендикулярно плоскости их установки так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения, отношение глубины к ширине которых на периферии составляет 1, в центре - 2. 6 з.п. ф-лы, 2 ил.

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры.

С внедрением светодиодов связаны перспективы развития целого ряда направлений: сигнальных световых и осветительных приборов на транспорте, оборудования для световой архитектурно-декоративной подсветки и рекламы и др. Одним из важнейших социально-экономических эффектов масштабного использования светодиодных технологий является возможность радикального сокращения затрат электроэнергии на освещение, составляющих по различным оценкам до 18-20% всех затрат произведенной электроэнергии. Длительность безотказной работы, оптическая мощность излучения, цветовая температура и другие выходные характеристики светодиодов тесно связаны с температурой р-n перехода, что делает разработку системы охлаждения важным этапом создания светодиодных систем.

Известна плоская тепловая труба [US 3613778, 19.10.1971, B64G 1/50; B64G 1/58; F28D 15/02], заполненная пористым металлическим фитилем или сеткой в паровом канале.

Толщина фитиля способствует увеличению теплопередающей способности тепловой трубы. Однако с ростом толщины фитиля увеличивается его термическое сопротивление в радиальном направлении, что препятствует росту теплопередающей способности трубы в целом и снижает допустимую максимальную плотность теплового потока в испарителе.

Известно устройство для охлаждения электронных компонентов [US 4975803, 04.12.1990, Н05К 7/20], которое имеет сэндвич конструкцию и представляет собой заключенные в металлический корпус (параллелепипед) множество пластин, параллельных плоскости установки электронных компонентов и выполненных из пористого материала с диагональными микроканалами, причем микроканалы соседних пластин имеют противоположные направления. Пористое ядро с микроканалами заполнено жидким теплоносителем. Тепло передается на торцевые части корпуса, где находится радиатор.

В такой конструкции отвод тепла в основном на торцевую часть не обеспечивает эффективную теплоотдачу к радиатору. Эффективная теплопроводность насыщенного жидкостью пористого материала в направлении, перпендикулярном плоскости установки электронных компонентов, существенно меньше, чем в направлении, параллельном плоскости установки электронных компонентов.

Наиболее близким по технической сущности к заявляемой системе является устройство охлаждения тепловыделяющих компонентов модуля радиоэлектронной аппаратуры [RU 2403692, 29.04.2009, Н05К 1/00, Н05К 7/20], состоящее из теплоотводящего основания, печатных плат и установленных на них электрорадиоэлементов. Теплоотводящее основание выполнено из микропористого материала с микроканалами и заполнено жидким теплоносителем. Микроканалы расположены в теплоотводящем основании в двух ортогональных направлениях, параллельных плоскости печатной платы. Тепло передается на торцевую часть теплоотводящего основания.

Однако отвод тепла в основном на торцевую часть теплоотводящего основания не обеспечивает эффективную теплоотдачу к радиатору, примыкающему к плоскости печатной платы.

Задачей настоящего изобретения является обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов.

Поставленная задача решается тем, что в интенсифицированной испарительной системе охлаждения светодиодного модуля, состоящей из основания с установленными на нем светодиодами, к которому примыкает слой теплоотводящего наполнителя из микропористого материала с каналами, заполненного жидким теплоносителем, согласно изобретению основание, на котором установлены светодиоды, выполнено из высокотеплопроводного материала, к теплопроводящему основанию примыкает наполнитель из микропористого материала, который находится в объеме, ограниченном теплопроводящим основанием и радиатором, поверхность которого покрыта тонким слоем непористого теплопроводного материала, в микропористом наполнителе под светодиодами перпендикулярно плоскости установки светодиодов расположены миниканалы, причем они расположены так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения, отношение глубины к ширине которых на периферии составляет 1, а в центре - 2.

Согласно изобретению теплопроводящее основание интенсифицированной испарительной системы охлаждения светодиодного модуля выполнено из металла или металлокерамики, при этом радиальное оребрение нанесено непосредственно на теплопроводящее основание.

Согласно изобретению теплопроводящее основание интенсифицированной испарительной системы охлаждения светодиодного модуля выполнено из материала, имеющего структуру изолированных проводников внутри металла, например, изготовленного по технологии ALOX™. В этом случае между теплопроводящим основанием интенсифицированной испарительной системы охлаждения светодиодного модуля и микропористым наполнителем может быть установлена металлическая накладка, на которую в областях, примыкающих к торцам миниканалов, нанесено радиальное оребрение.

Наличие объема, заполненного микропористым материалом, облегчает задачу его наполнения необходимым объемом жидкости, а наличие миниканалов с интенсифицирующей поверхностью теплообмена на торцах, расположенной в максимальной близости к р-n переходам светодиодов, обеспечивает высокое значение отводимых тепловых потоков от каждого из светодиодов.

На фиг.1 изображена система охлаждения светодиодного модуля. Где: 1 - теплопроводящее основание, 2 - светодиоды, 3 - наполнитель из микропористого материала, 4 - ребра радиатора, 5 - миниканалы, 6 - интенсифицирующая поверхность теплообмена.

На фиг.2 показан вид интенсифицирующей поверхности теплообмена с радиальным треугольным оребрением (вид со стороны миниканала).

В предлагаемой конструкции система охлаждения светодиодного модуля состоит из теплопроводящего основания 1, на которое установлены светодиоды 2, с другой стороны к теплопроводящему основанию примыкает наполнитель из микропористого материала 3. Микропористый наполнитель 3 находится в объеме, ограниченном теплопроводящим основанием 1 и ребрами радиатора 4. Поверхность радиатора 4, который может быть выполнен из пористого материала, покрыта тонким слоем непористого теплопроводного материала. Миниканалы 5 расположены в микропористом наполнителе 3 под светодиодами перпендикулярно плоскости установки светодиодов. Части теплопроводящего основания, являющиеся торцами миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена 6 (поверхность, интенсифицирующую кипение и испарение), интенсифицируемую за счет радиального оребрения, фиг.2. Оребрение интенсифицирующей поверхности теплообмена 6 представляет собой радиальные микроканалы треугольного сечения. Отношение глубины к ширине каждого из радиальных микроканалов на периферии составляет 1, а в центре - 2.

Размеры микроканалов интенсифицирующей поверхности теплообмена меньше размеров пор наполнителя из микропористого материала, что создает необходимый капиллярный напор. Дополнительный капиллярный напор создается также за счет того, что размеры микроканалов интенсифицирующей поверхности уменьшаются по направлению к центру тепловыделяющего светодиода, что особенно важно при высоких тепловых потоках.

В процессе функционирования интенсифицированной испарительной системы охлаждения светодиодного модуля светодиоды выделяют тепло (зона нагрева), которое передается на торцы миниканалов. Зона охлаждения системы представляет собой поверхность радиатора. Для того, чтобы обеспечить передачу тепла, выделяемого светодиодами, в зону охлаждения, микропористый наполнитель 3 с миниканалами 5, находящийся в объеме, ограниченном теплопроводящим основанием 1 и ребрами радиатора 4, заполнен жидким теплоносителем, например водой. Микропористый наполнитель 3 насыщен теплоносителем в жидкой фазе, а в миниканалах 5 теплоноситель находится в паровой фазе. Теплоноситель осуществляет передачу тепла из зоны нагрева светодиода в зону охлаждения за счет скрытой теплоты парообразования. Тепло, поступающее в зону нагрева от светодиодов, вызывает испарение теплоносителя. На поверхности 6, интенсифицирующей кипение и испарение за счет радиального оребрения, кипение начинается при существенно меньших температурах перегрева, а коэффициент теплоотдачи значительно выше, чем на гладкой поверхности.

Возникающая при этом разность давлений побуждает пар двигаться из зоны нагрева в зону охлаждения, где пар конденсируется, отдавая при этом скрытую теплоту парообразования. В результате постоянного испарения количество жидкости в зоне нагрева уменьшается, и поверхность раздела фаз жидкость-пар сдвигается внутрь микропористого наполнителя 3, что вызывает возникновение здесь капиллярного давления. Это капиллярное давление заставляет сконденсировавшуюся в зоне охлаждения жидкость возвращаться обратно в зону нагрева. Таким образом, непрерывно осуществляется перенос тепла из зоны нагрева в зону охлаждения.

Дополнительный капиллярный напор возникает за счет того, что размеры микроканалов интенсифицирующей поверхности теплообмена существенно меньше размеров пор наполнителя из микропористого материала и еще уменьшаются по направлению к центру тепловыделяющего светодиода, что особенно важно при высоких тепловых потоках.

При осушении микроканалов в центральной части интенсифицирующей поверхности капиллярный напор возрастает, обеспечивая более интенсивный подвод жидкости к окрестности светодиода и соответственно более высокие значения отводимых тепловых потоков.

Таким образом, обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается тем, что интенсивное кипение и испарение жидкости происходит вблизи р-n перехода светодиодов на интенсифицированной оребренной поверхности, размеры микроканалов которой существенно меньше пор микропористого материала, что обеспечивает высокий капиллярный напор.

Также обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается за счет высокого значения эффективной теплопроводности вдоль каналов (тепловых труб), которое более чем на два порядка превосходит теплопроводность современных печатных плат.

Одной из технических проблем использования тепловых труб является необходимость заполнения каждой трубы точно определенным объемом жидкости при одновременном вакуумировании. Предложенная конструкция требует одноразового заполнения жидкостью и менее чувствительна к вариациям первоначального объема жидкости.

Работоспособность предложенной конструкции системы охлаждения светодиодного модуля подтверждается экспериментальными данными и выполненными оценками и расчетами.


ИНТЕНСИФИЦИРОВАННАЯ ИСПАРИТЕЛЬНАЯ СИСТЕМА ОХЛАЖДЕНИЯ СВЕТОДИОДНОГО МОДУЛЯ
ИНТЕНСИФИЦИРОВАННАЯ ИСПАРИТЕЛЬНАЯ СИСТЕМА ОХЛАЖДЕНИЯ СВЕТОДИОДНОГО МОДУЛЯ
Источник поступления информации: Роспатент

Showing 71-80 of 96 items.
25.01.2019
№219.016.b41e

Горелочное устройство

Изобретение относится к теплоэнергетике. Горелочное устройство содержит корпус, камеру газогенерации с соплом и воздухоподводящими отверстиями, встроенный парогенератор водяного пара, состоящий из бачка-испарителя, паропровода и паровой форсунки, размещенной в камере газогенерации соосно с...
Тип: Изобретение
Номер охранного документа: 0002678150
Дата охранного документа: 23.01.2019
14.03.2019
№219.016.df6d

Дуговой способ получения графена

Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. % или карбида кремния в...
Тип: Изобретение
Номер охранного документа: 0002681630
Дата охранного документа: 11.03.2019
08.04.2019
№219.016.feaa

Паромасляное горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Горелочное устройство содержит цилиндрический корпус в виде стакана, установленного так, что его ось перпендикулярна горизонту, паровую форсунку для подачи перегретого водяного пара...
Тип: Изобретение
Номер охранного документа: 0002684300
Дата охранного документа: 05.04.2019
09.05.2019
№219.017.49b9

Устройство для вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру,...
Тип: Изобретение
Номер охранного документа: 0002686976
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5d9f

Установка рулонного типа для синтеза графена

Изобретение относится к области нанотехнологий. Установка рулонного типа для синтеза графена включает блок подготовки газовой смеси 5, блок откачки 6, вакуумную рабочую камеру 1 с подогреваемым щелевым соплом 2, на выходе из которого реализуется ламинарное течение, перфорированную по краям...
Тип: Изобретение
Номер охранного документа: 0002688839
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5e3e

Способ переноса графена с металлической подложки на полимерный материал

Изобретение относится к области нанотехнологий. Изобретение относится к области получения новых углеродных материалов и раскрывает способ механического переноса графена, полученного методом химического осаждения из паровой фазы (CVD) на меди, на полимерные материалы. Способ переноса графена с...
Тип: Изобретение
Номер охранного документа: 0002688628
Дата охранного документа: 21.05.2019
05.07.2019
№219.017.a554

Способ вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ включает импульсное скоростное вакуумирование в вакуумной камере при помощи вакуумного насоса, ресивера, трубопроводов с быстродействующими...
Тип: Изобретение
Номер охранного документа: 0002693586
Дата охранного документа: 03.07.2019
02.10.2019
№219.017.cefa

Дозатор порошков металлоорганических материалов

Изобретение относится к устройствам для циклической дозированной подачи порошков металлоорганических соединений при осаждении покрытий. Сущность: устройство включает электродвигатель (2), соединенный с вращающимся валом (3). Соосно валу (3) установлены вращающийся диск (5) с дозирующими...
Тип: Изобретение
Номер охранного документа: 0002700044
Дата охранного документа: 12.09.2019
04.10.2019
№219.017.d213

Электрический парогенератор

Изобретение относится к теплоэнергетике, а именно к быстродействующим парогенераторам, предназначенным для генерирования водяного пара с электрообогревом, и может быть использовано для получения перегретого пара. Электрический парогенератор содержит корпус, выполненный в виде основания,...
Тип: Изобретение
Номер охранного документа: 0002701970
Дата охранного документа: 02.10.2019
17.10.2019
№219.017.d683

Способ получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе

Изобретение относится к теплотехнике и может быть использовано в области энергетики, в том числе альтернативной, микроэлектроники и экологии, при использовании и преобразовании низкопотенциального тепла напрямую в электричество. Задачей изобретения является создание нового эффективного способа...
Тип: Изобретение
Номер охранного документа: 0002702982
Дата охранного документа: 14.10.2019
Showing 61-63 of 63 items.
20.01.2018
№218.016.1e3a

Интенсивный конденсатор пара с контрастным и градиентным смачиванием

Изобретение относится к области интенсификации теплообмена при конденсации внутри труб и каналов, а также конденсации на поверхностях, расположенных в объеме пара. Интенсивный конденсатор пара с контрастным и градиентным смачиванием выполнен в форме охлаждаемого цилиндра, на внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002640888
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e46

Плоский эффективный конденсатор-сепаратор для микрогравитации и транспортных приложений

Изобретение относится к области мини- и микросистем, которые используют в электронике, медицине, энергетике, аэрокосмической индустрии, на транспорте и могут применяться в устройствах для охлаждения электроники. Согласно изобретению конденсатор и сепаратор выполнены в виде плоского охлаждаемого...
Тип: Изобретение
Номер охранного документа: 0002640887
Дата охранного документа: 12.01.2018
04.04.2018
№218.016.2f1b

Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора

Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в...
Тип: Изобретение
Номер охранного документа: 0002644625
Дата охранного документа: 13.02.2018
+ добавить свой РИД