×
14.03.2019
219.016.df6d

ДУГОВОЙ СПОСОБ ПОЛУЧЕНИЯ ГРАФЕНА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. % или карбида кремния в соответствующей концентрации по кремнию. Осуществляют электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере при отношении площадей анода к катоду 1:8. Продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния без примеси иных углеродных форм. Изобретение обеспечивает получение графенового материала высокого качества простым способом. 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к области нанотехнологий и может быть использовано для получения графена и композиционных материалов с высокой электро- и теплопроводностью на основе графена. Наиболее перспективным, относительно недорогим и доступным методом для получения графена достаточно высокого качества является химическое газофазное осаждение (CVD) на поверхности таких переходных металлов как Ni, Pd, Ru, Ir, Cu и др. Данный метод изучался и использовался еще до открытия графена. О формировании графеновых структур (тонкий графит) в результате подготовки поверхностей переходных металлов в промышленном гетерогенном катализе было известно в течение почти 50 лет. Графитизация поверхности металлов использовалась с целью изменения физических свойств поверхности и предотвращения коррозии. Слои графита впервые были обнаружены на поверхностях Ni, которые подвергались воздействию источников углерода в виде углеводородов или газообразного углерода. На сегодняшний день методом CVD получают поликристаллические пленки графена больших размеров. Преимуществом данного метода является масштабируемость получаемых образцов. Трудности этого метода связаны с контролем роста единичного слоя и наличием дефектов получаемого материала. Так же недостатком данного метода является необходимостью переноса графеновой пленки, выращенной на поверхности металла, на нужную поверхность. В процессе переноса пленки используют такие методы как вакуумное, химическое и электрохимическое травление металлических подложек. Механизм роста пленки связан с двумя процессами. Первый, термическое разложение углеродосодержащих газов на поверхности металлов. Второй, растворение углерода в металле при высоких температурах и последующая сегрегация (выделение) на поверхности углерода, при охлаждении металлической подложки. Растворимость углерода в металле, кристаллическая решетка материала подложки и условия процесса роста определяют морфологию и толщину (количество слоев) графеновой пленки. Рост на гексагональной решетке часто называют эпитаксиальным, даже если нет значительного совпадения между решеткой графита и подложки.

Альтернативным методом синтеза графена является электрическая дуга с графитовыми электродами (углеродная дуга). Углеродная дуга широко используется для синтеза различных УНМ, таких, как фуллерены, углеродные нанотрубки, луковичные структуры и графен. В большинстве случаев дуговой материал представляет собой смесь наноматериалов различного типа, в различных пропорциях, которые зависят от параметров разряда, атмосферы разряда и катализатора. Обогащение получаемой в углеродной дуге сажи графеновыми структурами происходит при использовании в качестве буферного газа смеси Н2+Не, H2+N2, H2+N2+He, H2+Ar, NH3 (при давлениях 400-700 тор). Данный эффект связывается с гидрированием углеродных кластеров зародышей, что предотвращает их свертывание в замкнутые структуры. Так же на формирование графеновых структур влияет теплоемкость и теплопроводность смеси буферных газов. При изменении температурного градиента в реакторе изменяется время пребывания углеродных фрагментов в области нуклеации углеродных кластеров и роста графитовых фрагментов. Наличие водорода в смеси при разряде не обязательное условие, известно, что графеновые плоскости в дуговом разряде так же формируются в атмосфере СО и воздуха (который в условиях разряда представляет собой смесь СО+N2), но при давлениях 1000-1300 тор.

Известен способ получения графена с высокой степенью кристалличности (патент CN №102153076, 2011 г., B82Y40/00; С01В 31/04), включающий электродуговое распыление графитовых стержней в различных газовых смесях, для распыления используется дуга постоянного тока.

Недостатками этого способа являются наличие в продуктах аморфного углерода, необходимость использовать водород для синтеза графена.

Наиболее близким по технической сущности заявляемому способу является способ (патент KR 20140092642, 2014 г., B01J 19/10; С01В 31/02; Н05В 7/18) получения графена высокого качества с использованием электродугового разряда, включающий электродуговое распыление графитовых стержней, при котором происходит распыление графитового электрода с введенной добавкой металла - катализатора. Ввод катализатора происходит путем запрессовки смеси порошков (металл и графит) в графитовый электрод.

Недостатком данного решения является наличие в продуктах синтеза различных наноформ графита (кроме графена присутствуют луковичные частицы, нанотрубки, фуллерены).

Задачей изобретения является разработка простого способа производства графенового материала высокого качества, без примеси иных углеродных форм.

Поставленная задача решается тем, что в дуговом способе получения графена, включающем электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере, при котором графитовый стержень заполняют графитовым порошком с добавкой, согласно изобретению, в качестве добавки используют порошок кремния в концентрации 16,5-28% по массе или карбида кремния в соответствующей концентрации по кремнию, отношение площадей анода к катоду 1:8, продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния.

Присутствие кремния существенно влияет на конденсацию паров углерода в плазменно-дуговой технологии синтеза. Основной эффект влияния состоит в увеличении доли графена в синтезированном материале при увеличении концентрации кремния. Данные измерений РФА и КР свидетельствуют о том, что формирование графеновых плоскостей коррелирует с присутствием наночастиц карбида кремния. Этот факт позволяет заключить, что наночастицы карбида кремния являются прекурсором для роста графена. На основе проведения качественного анализа процессов, происходящих при конденсации Si-C пара, сделано заключение о двух механизмах влияния кремния на конденсацию углерода. Во-первых, конденсация паров кремния, сопровождающаяся химической реакцией образования карбида кремния, влияет на кинетику конденсации углерода и подавливает формирование замкнутых углеродных кластеров. Во-вторых, формирование кристаллов карбида кремния приводит к возможности С - грани кристаллов карбида кремния выступать в роли шаблона для роста графеновых плоскостей. Отношение площадей анода к катоду 1:8 влияет на скорость распыления электродов и определяет соотношение концентраций паров кремния и углерода при конденсации.

Наличие аморфного углерода определялось на основе изображений просвечивающего электронного микроскопа. На фиг. 1-4 видно, что с увеличением концентрации кремния количество аморфного углерода снижается и при концентрации 16,5% и выше отсутствует.

На фиг. 1 показано ПЭМВР (просвечивающий электронный микроскоп высокого разрешения) изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 16,5% mass.

На фиг. 2 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 13% mass.

На фиг. 3 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 8% mass.

На фиг. 4 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремниям - 4,7% mass.

На фиг. 5 показано ПЭМВР изображение чистого С.

На фиг. 6 показано ПЭМВР изображение частицы SiC.

Способ осуществляется следующим образом.

Кремниевый порошок смешивается с графитовым и запрессовывается в центральное отверстие графитового электрода, без использования дополнительных связующих. При этом концентрация кремния к углероду в электроде должна соответствовать диапазону 16,5-28% по массе. Диаметры анода и катода выбираются 50 и 400 мм2, соответственно. Анодное распыление электрода происходит в атмосфере гелия при давлениях от 10 до 200 тор. Анодное распыление электрода происходит при напряжении 20 В, токе разряда 100-200 А. Сбор материала осуществляется с охлаждаемых стенок реактора.

Использование изобретения позволяет получать сажу состоящую из стопок графеновых слоев, с количеством графеновых слоев от 1 до 7. При концентрации добавки кремния больше 16,5% в материале отсутствует аморфный углерод, материал состоит только из графеновых плоскостей и наночастиц карбида кремния. Использование изобретения позволяет получать наночастицы карбида кремния диаметром 10-15 нм.

Дуговой способ получения графена, включающий электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере, при котором графитовый стержень заполняют графитовым порошком с добавкой, отличающийся тем, что в качестве добавки используют порошок кремния в концентрации 16,5-28% по массе или карбида кремния в соответствующей концентрации по кремнию, отношение площадей анода к катоду 1:8, продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния.
Источник поступления информации: Роспатент

Showing 1-10 of 95 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
Showing 1-10 of 16 items.
10.10.2014
№216.012.fae0

Способ синтеза полых наночастиц γ-alo

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-AlO. Способ синтеза полых наночастиц γ-AlO реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала,...
Тип: Изобретение
Номер охранного документа: 0002530070
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.054e

Способ синтеза наноструктурного композиционного сео-pdo материала

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002532756
Дата охранного документа: 10.11.2014
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
20.01.2018
№218.016.176c

Способ синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и...
Тип: Изобретение
Номер охранного документа: 0002635621
Дата охранного документа: 14.11.2017
19.04.2019
№219.017.32eb

Способ синтеза наночастиц карбида вольфрама

Изобретение относится к способу синтеза наночастиц карбида вольфрама. Способ включает синтез кислородсодержащих соединений вольфрама углеводородами с использованием плазмы электрического разряда. При этом управление морфологией синтезируемых наночастиц осуществляют путем откачивания вакуумной...
Тип: Изобретение
Номер охранного документа: 0002433888
Дата охранного документа: 20.11.2011
23.04.2019
№219.017.36af

Способ синтеза наночастиц металлов осаждением на пористый углеродный материал

Изобретение относится к получению наночастиц металла. Способ включает испарение мишени из металла электронным пучком в вакууме и осаждение наночастиц металла. Испарение мишени из металла ведут электронным пучком, направленным под углом 30-90 градусов к поверхности мишени. Обеспечивают...
Тип: Изобретение
Номер охранного документа: 0002685564
Дата охранного документа: 22.04.2019
09.05.2019
№219.017.49b9

Устройство для вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру,...
Тип: Изобретение
Номер охранного документа: 0002686976
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5d9f

Установка рулонного типа для синтеза графена

Изобретение относится к области нанотехнологий. Установка рулонного типа для синтеза графена включает блок подготовки газовой смеси 5, блок откачки 6, вакуумную рабочую камеру 1 с подогреваемым щелевым соплом 2, на выходе из которого реализуется ламинарное течение, перфорированную по краям...
Тип: Изобретение
Номер охранного документа: 0002688839
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5e3e

Способ переноса графена с металлической подложки на полимерный материал

Изобретение относится к области нанотехнологий. Изобретение относится к области получения новых углеродных материалов и раскрывает способ механического переноса графена, полученного методом химического осаждения из паровой фазы (CVD) на меди, на полимерные материалы. Способ переноса графена с...
Тип: Изобретение
Номер охранного документа: 0002688628
Дата охранного документа: 21.05.2019
+ добавить свой РИД