×
27.03.2015
216.013.357c

Результат интеллектуальной деятельности: КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002545176
Дата охранного документа
27.03.2015
Аннотация: Изобретение относится к области катализа и касается производства катализаторов полимеризации дициклопентадиена. Катализатор полимеризации имеет общую формулу (I), где новый заместитель выбран из группы аминостиролов. Это обеспечивает принципиально новые свойства катализатора. Получают катализатор взаимодействием трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере, выделяют образовавшийся инденилиденовый комплекс рутения. Последний последовательно подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и соответствующим аминостиролом с образованием целевого продукта. Технический результат заключается в снижении расхода катализатора до 280000:1 при расширении границ соотношения субстрат:катализатор до от 20000:1 до 280000:1, в которых возможно контролировать скорость реакции полимеризации, сокращении времени до начала процесса полимеризации до от 0,5 мин и улучшении реологических, механических и термических показателей получаемого полициклопентадиена, что обеспечивает получение изделия из полидициклопентадиена с высокими потребительскими свойствами. 2 н.п. ф-лы, 7 пр.

Изобретение относится к области гомогенного металлокомплексного катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена (ДЦПД). В последнее время широкое распространение получили катализаторы на основе карбеновых комплексов рутения для полимеризации цикло- и бициклоолефинов с раскрытием кольца по реакции метатезиса.

Известен ряд катализаторов метатезисной полимеризации с контролируемой каталитической активностью, опубликованных Граббсом и запатентованных Калифорнийским Технологическим институтом. HEJL A., DAY M.W., GRUBBS R.H. Latent Olefin Metathesis Catalysts Featuring Chelating Alkylidenes II. Organomet, 2006, 25, p.6149-6154. UNG Т., HEJL A., GRUBBS R.H., SCHRODI Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organomet., 2004, 23, p.5399-5401.

Катализаторы используют для получения полимеров из циклоолефинов и бициклоолефинов по реакции метатезисной полимеризации с раскрытием цикла при мольном соотношении мономер:катализатор в интервале от 30000:1 до 40000:1.

Высокая активность этих катализаторов затрудняет их применение в полимеризации ДЦПД, т.к. частицы катализатора покрываются слоем образовавшегося полимера с формированием микрокапсул, что препятствует растворению катализатора в мономере. Это приводит к большому расходу катализаторов и, как следствие, высокой себестоимости получения полидициклопентадиена.

Предварительное растворение катализатора в инертном растворителе снижает показатели качества полимера - полидициклопентадиена (ПДЦПД).

Известен способ получения катализатора метатезисной полимеризации дициклопентадиена, заключающийся в том, что катализатор Граббса второго поколения или его производные обрабатываются соответствующим стиролом в хлористом метилене при 40°С. Способ метатезисной полимеризации дициклопентадиена проводят при соотношении мономер:катализатор не выше 40000:1 (US 2005261451 А1, 24.11.2005).

Недостатком данного способа является низкий выход целевого продукта, который составляет от 50 до 65% на две стадии. Это обусловлено многостадийностью синтеза и несовершенством методики.

Известны способы получения полидициклопентадиена под действием рутениевых катализаторов - карбеновых комплексов с фосфиновыми лигандами (катализаторы Граббса первого поколения), которые отличаются хорошей устойчивостью и эффективностью, в 5 раз превосходящей комплексы вольфрама, что позволяет использовать мольное соотношение мономер:катализатор до 15000:1 (WO 9960030 А1, 25.11.1999 и ЕР 0865449 В1, 29.10.2003).

Основным недостатком рутениевых катализаторов первого поколения является низкая каталитическая активность, что обусловливает необходимость использования большого количества катализатора от 1:8000 до 1:15000.

Активность рутениевых катализаторов второго поколения в 5 и более раз превосходит таковую для катализаторов первого поколения, однако плохая растворимость и высокая скорость полимеризации дициклопентадиена затрудняет их использование. Катализатор, не успевая раствориться в мономере, покрывается слоем полимера - капсулируется и теряет активность. Это приводит к необходимости существенного увеличения расхода катализатора. Кроме того, при изготовлении изделий из полидициклопентадиена (ПДЦПД) методом литьевого формования возникают технологические проблемы, поскольку отсутствует возможность управления временем начала полимеризации и образующийся слишком рано полимер может забивать узлы подачи смеси мономера и катализатора.

Известен рутениевый катализатор метатезисной полимеризации дициклопентадиена, представляющий собой (1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден)дихлоро(о-N,N-диметиламино-метилфенилметилен)рутений формулы (1). Способ получения катализатора заключается в том, что катализатор Граббса второго поколения подвергают взаимодействию с 2-(N,N-диметиламинометил)стиролом в толуоле при нагревании в инертной атмосфере. В другом варианте способ получения катализатора состоит том, что катализатор Граббса первого поколения последовательно в одном реакторе подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином, а затем с 2-(N,N-диметиламинометил)стиролом в толуоле при нагревании в инертной атмосфере (RU 2374269 С2, 20.07.2009).

К недостаткам способа можно отнести невысокие каталитическую активность и чистоту катализатора.

Известен катализатор полимеризации дициклопентадиена общей формулы:

где L - заместитель, выбран из группы, включающей:

, , , ,

Способ его получения предусматривает взаимодействие трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере, выделяют образовавшийся инденилиденовый комплекс рутения, который последовательно в одном реакторе подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и 2-(N,N-диалкиламинометил)стиролом, или 1-(2-винилбензил)пирролидином, или 4-(2-винилбензил)морфолином в толуоле при нагревании 60-70°С в инертной атмосфере. Причем диалкил- представляет собой диэтил-, или метилэтил-, или метил(2-метоксиэтил)- (RU 2393171 С1, 27. 08.2010).

Наиболее близким к предложенному является катализатор полимеризации дициклопентадиена (ДЦПД), имеющий общую формулу:

где L-заместитель, выбран из группы аминостиролов. Получают катализатор взаимодействием трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере выделяют образовавшийся инденилиденовый комплекс рутения. Последовательное взаимодействие с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорметилимидазолидином и соответствующим 2-винилбензиламином приводит к образованию целевого продукта (RU 2462308 С1, 27.09. 2012).

Основными недостатками известных катализаторов для получения полидициклопентадиена и материалов на его основе являются недостаточная каталитическая активность, затрудненность управления временем начала полимеризации и невозможность вовлекать в реакцию модифицирующие добавки, что приводит к нарушениям технологического цикла и неоднородности получаемого продукта.

Техническая задача, решаемая заявленной группой изобретений, заключается в создании эффективного катализатора метатезисной полимеризации дициклопентадиена, позволяющего управлять временем начала полимеризации, снижении его расхода за счет повышения растворимости в мономере и разработки способа его получения, обеспечивающего высокую чистоту катализатора.

Технический результат от реализации заявленной группы изобретений заключается в снижении расхода катализатора до 280000:1 при расширении границ соотношения субстрат:катализатор до от 20000:1 до 280000:1, в которых возможно контролировать скорость реакции полимеризации, сокращении времени до начала процесса полимеризации до от 0,5 мин и улучшении реологических, механических и термических показателей получаемого полициклопентадиена, что обеспечивает получение изделия из полидициклопентадиена с высокими потребительскими свойствами.

Катализатор полимеризации дициклопентадиена имеет общую формулу:

,

где заместитель выбран из группы аминостиролов:

N,N-диметил-1-(2-винилфенил)этиламин - Sla, N-метил-N-этил-1-(2-винилфенил)этиламин - S2a, N,N-диэтил-1-(2-винилфенил)этиламин - S3a, N,N-диметил-2-(2-винилфенил)пропил-2-амин - S4a и N-метил-1-(2-винилфенил)метиламин - S5a.

Введение новых вышеобозначенных электронодонорных заместителей в аминостирольный фрагмент катализатора изменяет пространственное строение, геометрию молекулы комплекса, изменяет ключевую длину связи Ru-N.

Заявленный катализатор позволяет осуществлять полимеризацию дициклопентадиена в более широком временном и температурном интервале от минус 10 до 250°С со временем цикла от 0,5 мин до 6 ч в зависимости от концентрации катализатора и температуры полимеризации, что расширяет технологические возможности при полимеризации и обеспечивает получение изделия из полидициклопентадиена с высокими потребительскими свойствами. Выход за пределы указанных диапазонов требует существенного увеличения расхода катализатора, а управление процессом полимеризации становится невозможным, что приводит к ухудшению качества целевого продукта.

Способ получения катализатора вышеобозначенной формулы осуществляют в две стадии.

Первая стадия - синтез инденилиденового комплекса (In) по следующей схеме:

Вторая стадия включает обработку инденилиденового комплекса рутения N-гетероциклическим карбеновым лигандом: [1,3-бис-(2,4,6-триметилфенил)-2-трихлорметилимидазолидином, H2IMesHCCl3] и соответствующим аминостиролом, выбранным из заданной группы аминостиролов: N,N-диметил-1-(2-винилфенил)этиламин - S1a, N-метил-N-этил-1-(2-винилфенил)этиламин - S2a, N,N-диэтил-1-(2-винилфенил)этиламин - S3a, N,N-диметил-2-(2-винилфенил)пропил-2-амин - S4a и N-метил-1-(2-винилфенил)метиламин - S5a. Выход катализатора составляет до 90%.

Примеры полимеризации ДЦПД

Пример 1

Раствор 0,45 мг катализатора Nla и 0,33 г (1,2 масс.%) пентаэритритол тетракис(3,5-ди-трет-бутил-4-гидроксициннамата) в 26,44 г ДЦПД (мольное соотношение ДЦПД:катализатор=280000:1) помещают в литьевую форму, нагретую до температуры 40°С, поднимают температуру до 200°С и поддерживают эту температуру в течение 30 мин. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 173°С, модуль упругости на изгиб 1,59 ГПа, прочность при растяжении: предел текучести 59,6 МПа, разрушающее напряжение 49,4 МПа, относительное удлинение при разрыве 93%. Ударная вязкость по Изоду с надрезом 4,7 кДж/м, твердость по Шору D83.

Пример 2

Раствор 6,3 мг катализатора N4a и 0,33 г (1,2 масс.%) пентаэритритол тетракис(3,5-ди-трет-бутил-4-гидроксициннамата) в 26,44 г ДЦПД (мольное соотношение ДЦПД:катализатор=20000:1) помещают в литьевую форму с температурой минус 10°С, поднимают температуру до 250°С и поддерживают эту температуру в течение 0,5 мин. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 170°С, модуль упругости на изгиб 1,61 ГПа, прочность при растяжении: предел текучести 59,3 МПа, разрушающее напряжение 49,0 МПа, относительное удлинение при разрыве 92%. Ударная вязкость по Изоду с надрезом 4,5 кДж/м, твердость по Шору D82.

Изобретение иллюстрируется следующими примерами.

Пример 3

Синтез катализатора проводят в условиях, исключающих попадание влаги и воздуха в реакционную систему. Используют технику и реакторы Шленка, подсоединенные к вакуумной системе и линии сухого аргона. Растворители: хлористый метилен, толуол, гексан, метанол, абсолютируют по стандартным методикам и хранят в инертной атмосфере. Чистоту катализаторов оценивают на основании спектров протонного магнитного резонанса (ЯМР 1Η) и (или) тонкослойной хроматографии ТСХ (гексан/этилацетат 4/1).

В сосуд Шленка объемом 1000 мл помещают 15 г (15,64 ммоль) RuCl2PPh3), 5,3 г (25,45 ммоль) 1,1-дифенил-2-пропин-1-ола, прибор заполняют аргоном. Добавляют 800 мл абсолютного тетрагидрофурана и кипятят в атмосфере аргона 3 ч при перемешивании. Смесь упаривают в вакууме при комнатной температуре на 50%, прибавляют в токе аргона 14 г (50,04 ммоль) трициклогексилфосфина и перемешивают 3 ч. Растворитель отгоняют в вакууме и к остатку добавляют 400 мл ацетона, после чего суспензию выдерживают при -20°С в течение 10 ч. Осадок отфильтровывают и промывают метанолом 2 раза по 70 мл, ацетоном 2 раза по 80 мл и холодным гексаном 80 мл и высушивают в вакууме. Получают 15,3 г инденилиденового комплекса рутения In(1,2) с выходом (14,83 ммоль) (94,8%).

Аналогичным образом получено 14,8 г In(1.2) с выходом 92% при проведении реакции в диоксане при кипячении вместо тетрагидрофурана.

В сосуд Шленка объемом 25 мл помещают 3,521 г (3,8 ммоль) In(1.2), 1,942 г (4,56 ммоль) 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидина, 50 мл абсолютного толуола. Нагревают в инертной атмосфере при 70°С в течение 15 ч. Смесь охлаждают и в токе аргона добавляют 1,000 г (5,71 ммоль) Ν,Ν-деметил-1-(2-винилфенил)этиламина - S1a. Нагревают в инертной атмосфере в течение 6 ч. Смесь охлаждают и фильтруют. Толуол отгоняют в вакууме и остаток суспендируют в 25 мл гексана. Смесь выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают 3×8 мл гексаном и 2×8 мл метанолом. После высушивания в вакууме получают катализатор N1a в количестве 1,895 г в виде зеленого порошка. Выход катализатора 79 %, чистый по данным ТСХ и ЯМР. Спектр 1Н ЯМР (600 МГц, CD2Cl2) δΗ, м.д.: 1,39 (3Н, d, J=6.8 Гц, СНСН3), 1,52 (3Н, s, NCH3), 2,04 (3Н, s, NCH3), 2,20-2,89 (18Н, m, 6CH2Ar), 3,89-4,35 (4H, m, NCH2CH2N), 5,73 (1H, q, J=6,8 Гц, CHCH3), 6,75 (1H, d, J=7,5 Гц, HAr), 6,96-7,15 (4H, m, HAr), 7,7-7,29 (2Н, m, HAr), 7,58 (3Н, t J=7,5 Гц, HAr), 18.73 (1Н, s, Ru=CH).

Пример 4

Осуществляют аналогично Примеру 1, но вместо N,N-диметил-1-(2-винилфенил)этиламина - S1a взято 1,079 г N-метил-N-этил-1-(2-винилфенил)этиламина - S2a. Получен катализатор N2a в количестве 1,764 г в виде светло-зеленого порошка. Выход 71%, чистый по данным ТСХ и ЯМР. Спектр 1Н ЯМР (600 МГц, CD2Cl2) δΗ, м.д.: 0,58 (3Н, t, J=7,2 Гц, NCH2CH3), 1,37 (3Н, d, J=6,8 Гц, СНСН3), 1,52 (3Н, s, NCH3), 2,04-2,27 (4Н, m, CH3Ar и NCHCH3), 2,29-2,89 (15Н, m, 5CH3Ar), 3,21-3,35 (1H, m, NCHCH3), 3,91-4,26 (4H, m, NCH2CH2N), 5,45 (1H, q J=6,8 Гц, CHCH3), 6,59 (1H, d J=7,5 Гц, HAr), 6,93-7,16 (3H, m, HAr), 7,16-7,23 (3H, m, HAr), 7,57 (3Н, t J=7,5 Гц, HAr), 18,84 (1H, s, Ru=CH).

Пример 5

Осуществляют аналогично Примеру 1, но вместо N,N-диметил-1-(2-винилфенил)этиламина - S1a взято 1,159 г N,N-диэтил-1-(2-винилфенил)этиламина - S3a. Получен катализатор N3a в количестве 1,723 г в виде зеленого порошка. Выход 68%, чистый по данным ТСХ и ЯМР. Спектр 1Н ЯМР (600 МГц, CDCl3) δΗ, м.д.: 0.31 (3Н, t, J=7,0 Гц, СН2СН3), 0,64 (3Н, t, J=7,0 Гц, СН2СН3), 1,40 (3Н, d, J=5,8 Гц, СНСН3), 2,06 (3Н, s, CH3Ar), 2,12-2,25 (2Н, m, NCH2CH3), 2,35 (3Н, s, CH3Ar), 2,45 (3Н, s, CH3Ar), 2,50 (3Н, s, CH3Ar), 2,61-2,77 (5Н, m, NCH2CH3+CH3Ar), 2,93 (3Н, s, CH3Ar), 3,40-3,49 (1H, m, NCH2CH3), 3,88-4,30 (5Н, m, NCH2CH3+ NCH2CH2N), 5,22-5,45 (1Н, m, NCHCH3), 6,46 (1H, d, J=7,3 Гц, HAr), 7,00-7,21 (6Н, m, HAr), 7,47 (1H, t, J=7,3 Гц, HAr), 18,75 (1H, s, Ru=CH).

Пример 6

Осуществляют аналогично Примеру 1, но вместо N,N-диметил-1-(2-винилфенил)этиламина - S1a взято 0,839 г 2N-метил-1-(2-винилфенил)метиламина - S5a. Получен катализатор N5a в количестве 2,090 г. Выход 90%, в виде темно-зеленового порошка, чистый по данным ТСХ и ЯМР. Спектр 1Н ЯМР (600 МГц, CDCl3) δΗ, м.д.: 1,58 (h, br.s., NH), 1,96 (3Н, d, J=6,0 Гц, NHCH3), 2,23-2,66 (18Н, m, 6CH3Ar), 3,24 (1H, d, J=13,7 Гц, NCH2Ar), 4,14 (4H, s, NCH2CH2N). 4,57 (1H, d, J=13,7 Гц, NCH2Ar), 6,66 (1H, d, J=7,4 Гц, HAr), 6,96 (1H, d, J=7,4 Гц, HAr), 7,03 (2H, s, HAr), 7,10 (2H, s, HAr), 7,14 (1H, t, J=7,4 Гц, HAr), 7,28 (2H, s, HAr), 7,43 (1H, t, J=7,4 Гц, HAr), 18,94 (1H, s, Ru=CH).

Пример 7

Осуществляют аналогично Примеру 1, но вместо N,N-диметил-1-(2-винилфенил)этиламина - S1a взято 1,079 г N,N-диметил-2-(2-винилфенил)пропил-2-амина - S4a. Получен катализатор N4a в количестве 1,737 г. Выход 70%, чистый по данным ТСХ.. Спектр 1Н ЯМР (600 МГц, CDC13) δΗ, м.д.: 1,38 (6Н, s, С(СН3)2), 1,53 (3Н, s, NCH3), 2,03 (3Н, s, NCH3), 2,20-2,88 (18Н, m, 6CH3Ar), 3,89-4,36 (4H, m, NCH2CH2N), 5,74 (1H, q, J=6,8 Гц, СНСН3), 6,74 (1H, d, J=7,5 Гц, HAr), 6,95-7,15 (4H, m, HAr), 7,17-7,28 (2Н, m, HAr), 7,57 (3Н, t J=7,5 Гц, HAr), 18.79 (1H, s, Ru=CH).

Катализаторы метатезисной полимеризации дициклопентадиена могут использоваться для промышленного производства изделий различных размеров из полидициклопентадиена. Получаемые полимеры не обладают запахом, механические и термические показатели соответствуют, а в ряде случаев превосходят таковые для промышленных материалов из полидициклопентадиена.


КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 121-130 of 130 items.
25.08.2017
№217.015.c07e

Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля. Катализатор содержит, мас.%: оксид никеля 5,0-9,0, оксид молибдена 18,0-24,0, оксид фосфора 1,0-3,0 и носитель, состоящий из оксида алюминия 62,2-70,5, вносимого из мезопористого алюмосиликата и гидроксида алюминия, и...
Тип: Изобретение
Номер охранного документа: 0002616601
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c0a6

Лиганд для получения комплекса переходного металла, способ его получения и способ получения комплекса переходного металла с использованием лиганда

Изобретение относится к лигандам для получения комплексов переходного металла, пригодным для использования в химической промышленности, общей формулы: выбранным из 4,5-бис(дифенилфосфино)-2Н-1,2,3-триазола, 4,5-бис(дифенилфосфино)-1-(гексил)-1Н-1,2,3-триазола,...
Тип: Изобретение
Номер охранного документа: 0002616628
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.cb2e

Катализатор гидроочистки дизельных фракций и способ его приготовления

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас. %: оксид молибдена - 16,0-22,0; оксид никеля или кобальта - 5,0-7,0; оксид бора -...
Тип: Изобретение
Номер охранного документа: 0002620089
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb9c

Катализатор гидрооблагораживания вакуумного газойля и способ его приготовления

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля и способу его приготовления. Катализатор содержит, мас.%: оксид кобальта 5,0-9,0, оксид вольфрама 7,0-14,0, оксид молибдена 7,0-14,0, оксид алюминия в виде смеси, состоящей из 30-50 мас.% оксида алюминия в виде бемита...
Тип: Изобретение
Номер охранного документа: 0002620267
Дата охранного документа: 24.05.2017
26.08.2017
№217.015.d975

Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения

Изобретение относится к области катализа и нефтепереработки, в частности к катализатору, на основе алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой. Готовый катализатор содержит, мас.%: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного...
Тип: Изобретение
Номер охранного документа: 0002623434
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.dee2

Способ разработки низкопроницаемой залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных низкопроницаемых залежей. Разработку нефтяных залежей ведут системой наклонно направленных нагнетательных и добывающих скважин с нагнетательной скважиной с ГРП в центре...
Тип: Изобретение
Номер охранного документа: 0002624944
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e5a2

Способ измерения петрофизических параметров низкопроницаемого керна

Изобретение относится к области нефтедобычи, в частности к способам определения проницаемости горных пород в лабораторных условиях, и предназначено для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации в образцах керна ультранизкопроницаемых горных...
Тип: Изобретение
Номер охранного документа: 0002626749
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
19.01.2018
№218.016.0921

Способ изготовления образца из слабоконсолидированного керна для проведения петрофизических исследований

Изобретение относится к петрофизике и может быть использовано при подготовке образцов керна слабоконсолидорованных осадочных горных пород к лабораторным исследованиям. Предлагаемый способ изготовления образца из слабоконсолидированного керна включает заморозку слабоконсолидированного и рыхлого...
Тип: Изобретение
Номер охранного документа: 0002631704
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.15bc

Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу. Проводят реакцию радикальной сополимеризации малеинового ангидрида и широкой фракции 1-олефинов C-C при соотношении исходных реагентов от 1:0,92 до 1:3,7. Реакцию...
Тип: Изобретение
Номер охранного документа: 0002635107
Дата охранного документа: 09.11.2017
Showing 131-140 of 153 items.
10.05.2018
№218.016.3c8d

Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу. Проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии...
Тип: Изобретение
Номер охранного документа: 0002647858
Дата охранного документа: 21.03.2018
14.09.2018
№218.016.8804

Способ получения сферических гранул на основе полидициклопентадиена

Изобретение относится к технологии изготовления полимерных гранул на основе высокомолекулярных материалов, в частности на основе полидициклопентадиена (ПДЦПД). Готовят реакционную смесь на основе ди- или олиго-циклопентадиена в присутствии катализатора метатезисной полимеризации, предварительно...
Тип: Изобретение
Номер охранного документа: 0002666892
Дата охранного документа: 13.09.2018
19.10.2018
№218.016.9415

Способ получения трифенилфосфата

Изобретение относится к способу получения трифенилфосфата и может использоваться в химической промышленности. Предложенный способ характеризуется тем, что трихлорид фосфора подвергают взаимодействию с фенолом при мольном соотношении 1:3,15-1:3,5, причем трихлорид фосфора добавляют к фенолу в...
Тип: Изобретение
Номер охранного документа: 0002669934
Дата охранного документа: 17.10.2018
29.03.2019
№219.016.f292

Катализатор метатезисной полимеризации дициклопентадиена, способ его получения (варианты) и способ его полимеризации

Изобретение относится к области катализа и касается производства катализаторов метатезисной полимеризации циклических олефинов, в частности дициклопентадиена (ДЦПД). Описаны катализаторы метатезисной полимеризации дициклопентадиена, представляющие собой...
Тип: Изобретение
Номер охранного документа: 0002375379
Дата охранного документа: 10.12.2009
29.03.2019
№219.016.f2cf

Катализатор и способ получения пропилена

Изобретение относится к области нефтехимии, а именно к производству катализаторов димеризации и метатезиса олефинов и способа получения пропилена из этилена. Описаны катализатор получения пропилена из этилена, содержащий оксид рения, оксид вольфрама и палладий на оксидном носителе, в качестве...
Тип: Изобретение
Номер охранного документа: 0002370314
Дата охранного документа: 20.10.2009
29.03.2019
№219.016.f33b

Способ получения эфиров бис-α, β-ненасыщенных дикарбоновых кислот

Изобретение относится к органическому синтезу и касается усовершенствованного способа получения эфиров бис-α,β-ненасыщенных дикарбоновых кислот, заключающийся в том, что диалкилмалеаты подвергают взаимодействию с циклическими олефинами в присутствии катализатора метатезиса при температуре от...
Тип: Изобретение
Номер охранного документа: 0002330015
Дата охранного документа: 27.07.2008
29.03.2019
№219.016.f394

Способ получения эфиров акриловой кислоты

Изобретение относится к органическому синтезу и касается усовершенствованного способа получения эфиров акриловой кислоты, заключающегося в том, что эфиры малеиновой кислоты с алифатическими спиртами C-C подвергают взаимодействию с этиленом в присутствии катализатора метатезиса при температуре...
Тип: Изобретение
Номер охранного документа: 0002307119
Дата охранного документа: 27.09.2007
29.03.2019
№219.016.f42b

Каталитическая композиция для получения эфиров акриловой кислоты по реакции метатезиса диалкилмалеатов с этиленом

Изобретение относится к области катализа и может быть использовано для получения эфиров акриловой кислоты по реакции метатезиса диалкилмалеатов с этиленом. Каталитическая композиция содержит в качестве одного из компонентов катализатор метатезиса олефинов, а в качестве второго компонента...
Тип: Изобретение
Номер охранного документа: 0002326733
Дата охранного документа: 20.06.2008
11.04.2019
№219.017.0b4d

Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки

Изобретение описывает депрессорно-диспергирующую присадку к дизельному топливу, которая содержит смесь депрессорного и диспергирующего компонентов, при этом в качестве депрессорного компонента применяется полимерное соединение, полученное реакцией радикальной сополимеризации малеинового...
Тип: Изобретение
Номер охранного документа: 0002684412
Дата охранного документа: 09.04.2019
13.06.2019
№219.017.813c

Способ получения микросфер полимерного проппанта

Изобретение относится к проппантам из полимерных материалов, применяемым при добыче нефти и газа методом гидравлического разрыва пласта. В способе получения микросфер полимерного проппанта, включающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002691226
Дата охранного документа: 11.06.2019
+ добавить свой РИД