×
10.03.2015
216.013.2f9a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕЧЕННОГО ТЕХНЕЦИЕМ-99m НАНОКОЛЛОИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в нее элюата технеция-99m, затем введение 0,20-0,25 мг аскорбиновой кислоты, 2,5-4,0 мг желатина и 0,02-0,03 мг олова (II) хлорида дигидрата из расчета на 1 мл смеси. Затем проводят нагревание полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и стерилизующую фильтрацию. В качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом. Изобретение обеспечивает получение меченного технецием-99m наноколлоида, у которого не менее 80% частиц имеют размер в интервале 20-100 нм, относительное содержание частиц с размерами менее 20 нм не превышает 6% и радиохимическая чистота составляет более 90% и сохраняется не менее 4 часов. 1 ил., 4 пр.
Основные результаты: Способ получения меченного технецием-99m наноколлоида, включающий приготовление исходной суспензии наноколлоида, введение в нее элюата технеция-99m, затем введение аскорбиновой кислоты и желатина в количествах на 1 мл смеси: 0,20-0,25 мг и 2,5-4,0 мг соответственно, и определенного количества олова (II) хлорида дигидрата, последующий нагрев полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и проведение стерилизующей фильтрации, отличающийся тем, что в качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом, исходную суспензию готовят в 0,1% растворе додецилбензол сульфата натрия и пропускают ее через фильтр с диаметром пор 100 нм, а олова (II) хлорид дигидрат берут в количестве 0,02-0,03 мг из расчета на 1 мл смеси.

Изобретение относится к медицине, в частности к способу получения радиоактивных препаратов медицинского назначения, которые могут быть использованы для радионуклидной диагностики, в том числе для проведения лимфосцинтиграфии в онкологии.

В существующей мировой практике наноколлоидные препараты, меченные короткоживущим радионуклидом технецием-99m (99mТс), достаточно широко используются для проведения диагностических исследований в онкологии, кардиологии, для обнаружения нарушений анатомо-морфологической структуры при опухолях, циррозах, гепатитах и других заболеваний. К числу таких препаратов, серийно выпускаемых в России, относится 99mТс-Технефит (ООО «Диамед»), представляющий собой коллоидный раствор на основе фитина (солей инозитгексафосфорной кислоты). Кроме того, разработан способ получения наноколлоида для приготовления радиофармпрепаратов на основе сульфида рения [Патент RU №2315624 С2, 27.01.2008].

В Европе производятся препараты «Nanocoll» (GE Amersham) с размерами частиц<80 нм; «99mTc-nanocolloid» (GE,Uppsala,Sweden) с теми же размерами частиц; «Nanocis» (CIS bio International) - размеры ~100 нм и др. [см. Чернов В.И., Афанасьев С.Г., Синилкин А.А. и др. Радионуклидные методы исследования в выявлении «сторожевых» лимфатических узлов//Сибирский онкологический журнал. - 2008. T.28. - №4. - C.5-10].

Все приведенные наноколлоидные препараты изготавливаются на основе соединений, образующих устойчивые гидрозоли. При этом решающим фактором успеха является не их химический состав, а размер наночастиц. Известно, например, что оптимальный размер частиц для проведения лимфосцинтиграфии составляет 20-100 нм. Такие частицы выводятся из тканей со скоростью, не позволяющей им проникать в кровяное русло. Частицы с размерами менее 20 нм легко проходят в кровяное русло, что препятствует визуализации лимфоузлов [Sampson C.B. Textbook of Radiopharmacy Theory and Practice. Vol.3, 2nd ed. London, United Kingdom: Gordon and Breach; 1994: 196]. В отличие от них наночастицы с размерами более 200 нм могут быть использованы для мечения аутолейкоцитов с целью выявления очагов воспалений в кардиологии. Например, в Австралии для маркировки белых клеток крови при диагностике инфекций и воспалений более 20 лет используется меченный технецием-99m наноколлоид на основе фторида олова [C. Tsopelas. The radiopharmaceutical chemistry of 99mTc-tin fluoride colloid-labeled-leukocytes//The quarterly journal of nuclear medicine and molecular imaging. - 2005. Vol.49, Р. 319-324].

Большая часть из известных наноколлоидных радиофармпрепаратов представляет собой простые неорганические комплексы 99mТс с сульфидами рения и сурьмы, получаемые по достаточно сложным технологиям. Например, известен способ получения наноколлоида сульфида сурьмы [Lin Y., Zhang X., Li J. et al. Appl. Radiat. Isot., 58 (2003), 347-352], включающий три основные стадии с большим количеством (более 10) промежуточных операций. Примерно столько же стадий включает способ получения 99mTc-сульфид рениевого наноколлоида [Tsopelas C.J. Nucl.Med., 42 (2001), 3, 460-466].

Более простой способ получения меченных технецием-99m наноколлоидов - путем проведения адсорбции восстановленного 99mTc на гамма-оксиде алюминия - был предложен авторами заявки [Патент RU №2463075 С1, 10.10.2012]. Способ включает приготовление водной суспензии из наноразмерного порошка гамма-оксида алюминия, введение элюата технеция-99m, затем в определенных количествах последовательно вводят аскорбиновую кислоту, олова (II) хлорид дигидрат и желатин. Полученную смесь нагревают на водяной бане при температуре 70-80°С в течение 30 мин, охлаждают до комнатной температуры в ультразвуковой ванне и проводят стерилизующую фильтрацию. Этот способ, как наиболее близкий к заявляемому, взят за прототип.

Проведенные нами предварительные исследования показали, что устойчивые коллоидные соединения с заданными размерами могут быть также получены на основе железо-углеродных частиц (Fe@C) с химически модифицированной поверхностью органическими радикалами - арендиазоний тозилатами (АДТ) [Патент RU №2405655 B2, 10.02.2010]. В результате предварительных токсикологических исследований было также установлено, что величина летальной дозы LD50 для таких частиц составляет>310 мг/кг веса, что согласно ГОСТ12.1.007 - 76 позволяет их отнести к группе 4 (малотоксичные вещества).

Еще одним важным фактором, повлиявшим на выбор Fe@C (АДТ) в качестве объекта для мечения технецием-99m, является то, что они, обладая магнитными свойствами, одновременно могут быть использованы в качестве рентгеноконтрастных агентов для проведения магнито-резонансной томографии. Все это открывает широкие возможности для их применения в двух параллельных видах диагностики с последующим получением информации не только о топографии очага воспаления, но и его функциональном состоянии.

Способов получения меченного 99mTc наноколлоида Fe@C (АДТ) нами в литературе не обнаружено, что и определило задачу разработки метода получения наноразмерного соединения 99mTc-Fe@C (АДТ), приемлемого по своим характеристикам для проведения лимфосцинтиграфии и других диагностических исследований.

Технический результат от предлагаемого изобретения состоит в получении меченного технецием-99m наноколлоида, отвечающего следующим требованиям:

- не менее 80% частиц имеют размер в интервале 20-100 нм;

- относительное содержание частиц с размерами менее 20 нм не превышает 6%;

- радиохимическая чистота радиофармпрепарата составляет более 90% и сохраняется не менее 4 часов.

В соответствии с этим, поставленная задача получения наноколлоида 99mTc-Fe@C (АДТ) с заданными размерами решается следующим образом. В способе получения меченного технецием-99m наноколлоида, включающем как и прототип, приготовление исходной суспензии наноколлоида, введение в него элюата технеция-99m, затем введение аскорбиновой кислоты и желатина в количествах на 1 мл смеси: 0,20-0,25 мг и 2,5-4,0 мг, соответственно, и определенного количества олова (II) хлорида дигидрата, последующий нагрев полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и проведение стерилизующей фильтрации, в отличие от прототипа, в качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом, исходную суспензию готовят в 0,1% растворе додецилбензол сульфата натрия и пропускают ее через фильтр с диаметром пор 100 нм, а олова (II) хлорид дигидрат берут в количестве 0,02-0,03 мг из расчета на 1 мл смеси.

Изобретение поясняется фиг. 1, на которой представлено лимфосцинтиграмма крысы через 1 час после введения под кожу животного наноколлоидного радиофармпрепарата 99mTc-Fe@C (АДТ). Накопление в лимфатическом узле 3,5% от общей введенной активности: 1 - лимфоузел, 2 - место введения препарата.

Сущность изобретения поясняется следующими примерами.

Пример 1. Во флакон вместимостью 20 мл вносят навеску Fe@C (АДТ) массой ~10 мг, разводят ее в 20 мл 0,1% раствора додецилбензол сульфата натрия и обрабатывают в ультразвуковой ванне в течение 30 мин. 2 мл полученной суспензии переносят в отдельный флакон, пропуская ее через фильтр с диаметром пор 220 нм. Затем к ней последовательно добавляют 2 мл элюата 99mTc с активностью 1,5-2 ГБк, 100 мкл водного раствора аскорбиновой кислоты с концентрацией 10 мг/мл, 10 мкл свежеприготовленного раствора Sn (II) (концентрация 8 мг/мл по SnCl2·2Н2О) и 100 мкл водного раствора желатина с концентрацией 100 мг/мл. После интенсивного перемешивания смесь кипятят в течение 30 мин с последующим охлаждением до комнатной температуры в ультразвуковой ванне и фильтруют через стерилизующий фильтр (0, 22 мкм) в асептических условиях в стерильный флакон.

Радиохимический выход продукта с размером частиц менее 100 нм относительно общей активности приготовленного препарата определяли путем фильтрации исходной смеси через фильтр с диаметром пор 100 нм. Содержание фракции с размерами менее 20 нм контролировали по данным накопления 99mTc в крови через 1 час после введения препарата экспериментальным животным. В рассмотренном примере введенные количества аскорбиновой кислоты, Sn (II) и желатина в пересчете на 1 мл приготовленной смеси составляют 0,25 мг, 0,02 мг и 2,5 мг соответственно. Выход продукта с размерами менее 100 нм составил 70%, а фракции менее 20 нм - 10%. Радиохимическая чистота фильтрата равна 90% и остается на этом уровне в течение 4-6 часов.

Пример 2. Реакционную смесь готовят так же, как и в примере 1, с тем отличием, что 2 мл приготовленной суспензии Fe@C (АДТ) переносят в отдельный флакон, пропуская ее через фильтр с диаметром пор 100 нм. За тем туда вводят те же количества элюата 99mTc, аскорбиновой кислоты, свежеприготовленного раствора Sn (II) и водного раствора желатина. В рассмотренном примере выход продукта с размерами менее 100 нм составил 86%, а фракции менее 20 нм - 9%. Радиохимическая чистота фильтрата равна 90% и остается на этом уровне в течение 4-6 часов.

Пример 3. Реакционную смесь готовят так же, как и в примере 2, с тем отличием, что вводят 15 мкл свежеприготовленного раствора Sn (II) (концентрация 8 мг/мл по SnCl2·2Н2О). Полученную смесь нагревают на водяной бане (70-80 єС) в течение 30 мин с последующим охлаждением до комнатной температуры и фильтрацией через стерилизующий фильтр (0,22 мкм) в асептических условиях в стерильный флакон.

В рассмотренном примере введенное количество Sn (II) в пересчете на 1 мл приготовленной смеси равно 0,03 мг. Выход продукта с размерами менее 100 нм составил 87%, а фракции менее 20 нм - 8%. Радиохимическая чистота препарата равна 96% и остается на этом уровне в течение 4-6 часов.

Пример 4. Реакционную смесь готовят так же, как и в примере 2, с тем отличием, что вводят 20 мкл свежеприготовленного раствора Sn (II) (концентрация 8 мг/мл по SnCl2·2Н2О). Полученную смесь нагревают на водяной бане (70-80 єС) в течение 30 мин с последующим охлаждением до комнатной температуры и фильтрацией через стерилизующий фильтр (0,22 мкм) в асептических условиях в стерильный флакон.

В рассмотренном примере введенное количество Sn (II) в пересчете на 1 мл приготовленной смеси равно 0,04 мг. Выход продукта с размерами менее 100 нм составил 67%, а фракции менее 20 нм - 8%. Радиохимическая чистота препарата равна 94% и остается на этом уровне в течение 4-6 часов.

Из представленных примеров следует, что фильтрация исходной суспензии Fe@C (АДТ) перед проведением мечения технецием-99m через фильтр с диаметром пор 100 нм обеспечивает повышение выхода целевого наноколлоида 99mTc-Fe@C (АДТ) с размерами частиц менее 100 нм до 86-87%, а введение в состав реакционной смеси Sn (II) в количестве 0,02-0,03 мг из расчета на 1 мл смеси обеспечивает радиохимическую чистоту продукта на уровне 90-96%. Дальнейшее увеличение в реакционной смеси содержания Sn (II) до 0,04 мг/мл приводит к образованию более крупного коллоида и снижению выхода целевого наноколлоида 99mTc-Fe@C (АДТ) с размерами частиц менее 100 нм до 67%.

В целом предлагаемый способ позволяет получать меченный технецием-99m наноколлоидный препарат на основе модифицированного Fe@C (АДТ), пригодный для проведения гамма-сцинтиграфических исследований, о чем свидетельствует лимфосцинтиграмма (cм. чертеж), полученная через 1 час после введения радиофармпрепарата экспериментальному животному (крысе). Накопление в лимфоузле 3,5%, что на много превосходит стандартные требования (1,4-1,7%).

Способ получения меченного технецием-99m наноколлоида, включающий приготовление исходной суспензии наноколлоида, введение в нее элюата технеция-99m, затем введение аскорбиновой кислоты и желатина в количествах на 1 мл смеси: 0,20-0,25 мг и 2,5-4,0 мг соответственно, и определенного количества олова (II) хлорида дигидрата, последующий нагрев полученной смеси на водяной бане при температуре 70-80°С в течение 30 мин, охлаждение до комнатной температуры в ультразвуковой ванне и проведение стерилизующей фильтрации, отличающийся тем, что в качестве наноколлоида используют железо-углеродные частицы, поверхность которых химически модифицирована арендиазоний тозилатом, исходную суспензию готовят в 0,1% растворе додецилбензол сульфата натрия и пропускают ее через фильтр с диаметром пор 100 нм, а олова (II) хлорид дигидрат берут в количестве 0,02-0,03 мг из расчета на 1 мл смеси.
СПОСОБ ПОЛУЧЕНИЯ МЕЧЕННОГО ТЕХНЕЦИЕМ-99m НАНОКОЛЛОИДА
Источник поступления информации: Роспатент

Showing 191-195 of 195 items.
13.02.2018
№218.016.24e8

Способ радиолокационного обзора пространства

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - обеспечение электронного сканирования лучом фазированной антенной решетки (ФАР) в азимутально-угломестном секторе для РЛС с одномерным электронным...
Тип: Изобретение
Номер охранного документа: 0002642453
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.2ecc

Генератор для получения стерильных радиоизотопов

Изобретение относится к генератору для получения стерильных радиоизотопов. Генератор содержит колонку с сорбентом и радиоизотопом, размещенную внутри радиационной защиты и корпуса генератора, иглу элюата, соединенную трубкой с колонкой, многоходовый кран снабжен ручкой переключения, воздушный...
Тип: Изобретение
Номер охранного документа: 0002644395
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2f8e

Состав и способ получения реагента для радионуклидной диагностики на основе меченной технецием-99m 1-тио-d-глюкозы

Изобретение относится к фармацевтической промышленности, а именно к составу реагента для радионуклидной диагностики на основе меченной технецием-99m 1-тио-D-глюкозы и к способу получения этого реагента. Реагент для радионуклидной диагностики представляет собой лиофилизат водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002644744
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.33cd

Двухэтапный способ измерения координат цели и устройство для его осуществления

Изобретения относятся к области радиолокации и могут быть использованы для сокращения времени обзора направления. Достигаемым техническим результатом изобретений является сокращение временных затрат на обнаружение подвижных целей и на измерение их координат в условиях действия пассивных помех....
Тип: Изобретение
Номер охранного документа: 0002645741
Дата охранного документа: 28.02.2018
23.02.2019
№219.016.c63c

Контрастная композиция для медицинской диагностики на основе комплексов гадолиния

Изобретение относится к контрастной композиции в виде водного раствора для магнитно-резонансной и рентгеновской диагностики, включающей гадолиния оксид (GdO), диэтилентриаминопентауксусную кислоту (ДТПА), медицинский полимер - поливинилпирролидон с мол.м.(12000±5000) дальтон в количестве 0,5-5...
Тип: Изобретение
Номер охранного документа: 0002396983
Дата охранного документа: 20.08.2010
Showing 291-300 of 307 items.
20.02.2019
№219.016.c414

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения радиоактивного меченного технецием-99m наноколлоида. Способ характеризуется тем, что в водную суспензию, приготовленную из наноразмерного порошка гамма-оксида алюминия с диаметром частиц 7-10 нм и концентрацией 0,5-0,7 мг/мл, после доведения рН среды до...
Тип: Изобретение
Номер охранного документа: 0002463075
Дата охранного документа: 10.10.2012
23.02.2019
№219.016.c63c

Контрастная композиция для медицинской диагностики на основе комплексов гадолиния

Изобретение относится к контрастной композиции в виде водного раствора для магнитно-резонансной и рентгеновской диагностики, включающей гадолиния оксид (GdO), диэтилентриаминопентауксусную кислоту (ДТПА), медицинский полимер - поливинилпирролидон с мол.м.(12000±5000) дальтон в количестве 0,5-5...
Тип: Изобретение
Номер охранного документа: 0002396983
Дата охранного документа: 20.08.2010
08.03.2019
№219.016.d40d

Способ определения дальности до постановщика прицельной по частоте шумовой помехи

Изобретение относится к области радиолокации и может быть использовано для определения дальности до постановщика прицельной по частоте шумовой помехи (ПП) радиолокационной станции (РЛС) в средстве управления зенитно-ракетной системы (СУ ЗРС). Достигаемый технический результат - увеличение...
Тип: Изобретение
Номер охранного документа: 0002681202
Дата охранного документа: 05.03.2019
29.03.2019
№219.016.ed1c

Способ радионуклидной диагностики рака молочной железы

Изобретение относится к медицине, а именно онкологии, и представляет собой способ радионуклидной диагностики рака молочной железы, включающий внутривенное введение радиофармацевтического препарата (РФП) и последующее сцинтиграфическое исследование, отличающийся тем, что вводят...
Тип: Изобретение
Номер охранного документа: 0002682880
Дата охранного документа: 22.03.2019
08.04.2019
№219.016.fe84

Способ получения комплекса технеция-99м с рекомбинантными адресными молекулами белковой природы для радионуклидной диагностики онкологических заболеваний с гиперэкспрессией her-2/neu

Изобретение относится к медицине, онкологии и химической технологии. Способ получения комплекса технеция-99м с рекомбинантными адресными молекулами белковой природы для радионуклидной диагностики онкологических заболеваний с гиперэкспрессией HER-2/neu заключается в том, что на первой стадии...
Тип: Изобретение
Номер охранного документа: 0002684289
Дата охранного документа: 05.04.2019
23.04.2019
№219.017.36c8

Способ обзора пространства и средство управления зенитно-ракетной системы для его осуществления

Изобретение относится к области радиолокации. Способ основан на первичном осмотре пространства с помощью радиолокационной станции РЛС∂ или приемопередающего модуля ППМ∂ с длиной волны λ∂ и последующем осмотре с помощью РЛСs с длиной волны λs<λ∂, на завязке и сопровождении трасс по данным РЛСs....
Тип: Изобретение
Номер охранного документа: 0002685556
Дата охранного документа: 22.04.2019
29.04.2019
№219.017.4517

Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98

Изобретение относится к области радиохимии, в частности к способам получения технеция-99m для медицины. Сущность изобретения: определяют предельную удельную массу кислоты m , необходимую для полного прекращения ее взаимодействия с оксидом алюминия. Количество кислоты m, требуемое для обработки...
Тип: Изобретение
Номер охранного документа: 0002403640
Дата охранного документа: 10.11.2010
22.06.2019
№219.017.8ead

Способ обзора пространства (варианты)

Изобретения относятся к области радиолокации и могут быть использованы для совершенствования средств управления (СУ) зенитно-ракетных комплексов или систем. Достигаемым техническим результатом является увеличение дальности обнаружения целей СУ, повышение помехозащищенности от пассивных помех....
Тип: Изобретение
Номер охранного документа: 0002692076
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.9280

Способ радионуклидной диагностики опухолей головного мозга

Изобретение относится к медицине, а именно к онкологи, и может быть использовано для радионуклидной диагностики анапластической астроцитомы. Пациенту вводят радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы, содержащий 1-тио-D-глюкозы натриевой соли гидрата...
Тип: Изобретение
Номер охранного документа: 0002692451
Дата охранного документа: 24.06.2019
01.08.2019
№219.017.baee

Способ компенсации помех (варианты) и радиолокационная станция для его осуществления

Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от импульсных, в том числе, ответных помех. Достигаемый технический результат - компенсация импульсной помехи, при исключении компенсации сигналов, отраженных от цели. Указанный...
Тип: Изобретение
Номер охранного документа: 0002695993
Дата охранного документа: 30.07.2019
+ добавить свой РИД