×
20.02.2015
216.013.29e0

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ КРАСНОГО ШЛАМА

Вид РИД

Изобретение

№ охранного документа
0002542177
Дата охранного документа
20.02.2015
Аннотация: Изобретение относится к технологии переработки вторичного минерального сырья, в частности красного шлама и может быть использовано при производстве восстановленных железорудных окатышей и цемента. Способ переработки красного шлама включает окомкование красного шлама, сушку и последующий двухстадийный высокотемпературный обжиг, состоящий из стадии окислительного обжига при температуре 1000-1150°C в потоке воздуха, и стадии восстановительного обжига. При этом стадию восстановительного обжига осуществляют при подаче в реактор восстановления продуктов адиабатической каталитической конверсии природного газа, нагреваемого потоком газа, выходящего из аппарата окислительного обжига. Сушку окомкованного шлама ведут за счет его контактирования с природным газом, нагретым до температуры 260-450°C. Поток газа, выходящего из аппарата окислительного обжига, подают как на нагрев природного газа, так и на получение и перегрев водяного пара, подаваемого на смешение с природным газом. Технический результат заключается в повышении коэффициента использования углеводородного сырья, снижении расхода кокса и уменьшении затрат. 8 з.п. ф-лы, 1 ил., 2 табл., 1 пр.

Изобретение относится к химической, горнодобывающей промышленности, в частности к технологиям переработки вторичного минерального сырья, в особенности, красного шлама и может быть использовано при производстве восстановленных железорудных окатышей, а также цемента.

Для производства одной тонны товарного глинозема необходимы: 2,6 тонны бокситов, 60-100 кг каустической щелочи и 30 кг известняка. Процесс ведется по способу Байера, который предполагает одним из конечных продуктов получение 1,3 тонны концентрированной суспензии. В классическом способе Байера выщелачивание боксита в автоклавах ведут из расчета связывания диоксида кремния SiO2 в гидроалюмосиликат натрия (ГАСН) с молярным составом Na2O·Al2O3·2SiO2·2a(NaAlO2)·sNa2SO4·cNa2CO3·hH2O, который выводится в массе нерастворимого остатка на шламовое поле. Это отходы, называемые красными шламами. Они содержат оксиды алюминия, железа, кремний, титан, кальций, натрий и другие металлы. Особо ценными составляющими являются примеси скандия и иттрия, извлечение которых повышает рентабельность переработки красных шламов. В отсутствие выгодных технологий переработки шлам складируют на тщательно изолированных территориях - шламохранилищах.

Для утилизации красных шламов предложено, в частности, перерабатывать это сырье в продукты для металлургии и производства строительных материалов - минеральных вяжущих. Способ, описанный в патенте РФ №2179590, опубл. 20.02.2002, включает: получение смеси красного шлама и известкового компонента, ее последующую обработку в присутствии восстановителя, отделение железосодержащего продукта. В смесь дополнительно вводят кремнеземистый компонент при следующем соотношении компонентов, мас.%: известковый компонент 5-20, кремнеземистый компонент 5-40, красный шлам - остальное, а термообработку полученной смеси в присутствии восстановителя производят при 1300-1500°C, после чего образовавшийся расплав нагревают до 1800°C, затем его охлаждают до 1500°C, осуществляют грануляцию и помол гранулята. Данный способ позволяет производить переработку в товарные продукты. Недостатком данного способа является сложность многостадийной технологии и высокие затраты на ее создание.

Предложен способ переработки красного шлама глиноземного производства, описанный в патенте РФ №2245371, дата публ. 27.08.2004, который включает подготовку порции шихты, содержащей красный шлам и углеродистый восстановитель, нагрев шихты в плавильном агрегате до температуры твердофазного восстановления железа, твердофазное восстановление оксидов железа в шихте углеродистым восстановителем и насыщение железа в подготовленной шихте углеродом, плавку восстановленной шихты с получением металлической фазы в виде чугуна и шлаковой фазы в виде первичного шлака, отделение чугуна от первичного шлака в полученном расплаве, нагретом до 1400°C. Технический результат - повышение эффективности переработки красных шламов за счет производства стали без промежуточного переплава, производства из вторичного шлака железотитанкремнистой лигатуры в виде самостоятельного продукта, а также производства из высокоглиноземистого конечного шлака глинозема или высокоглиноземистого цемента и концентрата РЗМ. Недостатком способа следует считать применение жидкого металла при высокой температуре, что будет вызывать его деградацию, взаимодействие с облицовкой, невозможность повышения давления продуктов, сложность и многостадийность очистки стали от кремния, серы и фосфора, высокие затраты.

Известен способ получения железорудных окатышей (пат. RU №2487952, опубл. 20.07.2013), принятый за прототип, который включает окомкование основного компонента, сушку и последующий двухстадийный высокотемпературный обжиг, в качестве основного компонента используют красный шлам, а высокотемпературный обжиг разделяют на стадию окислительного обжига и стадию восстановительного обжига, при этом стадию окислительного обжига осуществляют при температуре 1000-1150°C. При использовании способа достигается снижение содержания серы, фосфора и щелочных соединений и повышение прочности окатышей из красного шлама. Недостатком способа является большой расход дорогого кокса (соотношение с окатышами по весу 1:1), что снижает эффективность металлизации.

Задача настоящего изобретения - повысить коэффициент использования углеводородного сырья, снизить расход кокса и создать технологические возможности по уменьшению затрат на производство железорудных окатышей из красного шлама.

Поставленная задача решается тем, что в способе переработки красного шлама, включающем окомкование красного шлама, сушку и последующий двухстадийный высокотемпературный обжиг, состоящий из стадии окислительного обжига, проводимого при температуре 1000-1150°C в потоке воздуха, и стадии восстановительного обжига, стадию восстановительного обжига осуществляют при подаче в реактор восстановления продуктов адиабатической каталитической конверсии природного газа, нагреваемого потоком газа, выходящего из аппарата окислительного обжига.

Кроме того:

- сушку окомкованного шлама ведут за счет его контактирования в аппарате сушки с природным газом, нагретым до температуры 260-450°C,

- поток газа, выходящего из аппарата окислительного обжига, подают как на нагрев природного газа, так и на получение и перегрев водяного пара, подаваемого на смешение с природным газом,

- поток газа, выходящего из аппарата окислительного обжига, подают на нагрев потока парогазовой смеси, образуемой смешением нагретого природного газа и водяного пара, которую подают в реактор адиабатической каталитической конверсии природного газа,

- на выходе из реактора адиабатической каталитической конверсии природного газа поддерживают соотношение водород:моноксид углерода на уровне не ниже 4-8,

- высокотемпературный обжиг проводят при давлении 0.12-0.26 МПа,

- стадию восстановительного обжига осуществляют при температуре 750-950°C при регенеративном нагреве восстанавливающего газа потоком газа, выходящего из реактора восстановительного обжига,

- поток газа, выходящего из реактора восстановительного обжига, разделяют на поток, направляемый на рециркуляцию, и поток, сжигаемый в смеси с воздухом для повышения его температуры перед подачей в аппарат окислительного обжига,

- восстановительный обжиг проводят при добавлении в смесь твердого углерода в количестве 0.2-0.4 от веса шлама, подаваемого со стадии окислительного обжига.

На фигуре дана схема реализации способа, где 1 - красный шлам, 2 - аппарат окомкования, 3 - подача связующего, 4 - сырые окатыши, 5 - аппарат сушки, 6 - поток нагретого природного газа, 7 - поток нагретой парогазовой смеси, 8 - сухие окатыши, 9 - аппарат окислительного обжига, 10 - нагретый воздух, 11 - подача воздуха, 12 - горелка, 13 - узел разделения газа, 14 - окисленные окатыши, 15 - реактор восстановительного обжига, 16 - поток газа окислительного обжига, 17 - высокотемпературный теплообменник, 18 - высокотемпературная парогазовая смесь, 19 - реактор адиабатической каталитической конверсии природного газа, 20 - продукты адиабатической каталитической конверсии, 21 - железорудные окатыши, 22 - восстановительный газ, 23 - поток рециркуляции, 24 - нагретый газ окислительного обжига, 25 - среднетемпературный теплообменник, 26 - природный газ, 27 - сбросные газы, 28 - водяной пар, 29 - парогенератор, 30 - питательная вода.

Примером реализации изобретения служит способ переработки красного шлама, описанный ниже.

В излагаемом примере осуществления изобретения в качестве красного шлама 1 применяется сырье, соответствующее по минеральному составу красному шламу после обработки его по гидрогранатовой технологии. Химический и минеральный состав гидрогранатовых шламов (235°C; Na2Oку=180; αку=30; добавка CaO+Na2O·Fe2O3) [http://www.alcorus.ru/articles/14.ru.html] приведен в Таблице 1.

Таблица 1
Наименование параметра Единица измерения "Бирач", Босния БАЗ, Россия, красный шлам УАЗ, Россия, спековый шлам НГЗ, Украина ДАЗ, Украина
Химический состав1:
SiO2 % 12,1 8,3 10,29 4,66 9,36
Fe2O3 % 46,1 48,65 28,9 47,7 32,2
Al2O3 % 6,2 6,1 5,8 9,0 8,7
CaO % 23,9 23,0 31,0 22,3 26,0
Na2O % 0,43 0,95 0,45 0,48 0,9
TiO2 % 4,59 3,36 3,53 5,09 3,73
H2O % 6,66 9,2 14,5 10,77 13,1
прочие % 0,02 0,44 5,53 0 6,01
Минеральный состав:
фаза ГАСН % 2,1 4,2 2,1 2,3 4,1
сумма гидрогранатов % 54,4 35,5 46,5 24,4 44,0
гематит % 35,3 43,3 25,7 48,1 31,9
прочие (перовскит, Ca(OH)2, ТКГА, др.) % 8,2 17,0 25,7 25,2 20,0
Товарный выход Al2O3 % 95,14 94,87 91,96 (из спека) 90,97 91,35
Потери Na2O в шламе на 1 кг SiO2 кг 0,04 0,11 0,04 0,1 0,1
1 - средневзвешенный состав бокситов:

- на НГЗ - Al2O3 = 47,0%; Fe2O3 = 22,5%;
- на ДАЗ - Al2O3 = 51,33%; Fe2O3 = 16,44%

В шихту окатышей 1 вводят связующие добавки 3 (главным образом бентонит, а также его смесь с водой, известь, хлористый кальций, железный купорос, гуминовые вещества), которые в количестве 0,5-1,5% вводят в шихту перед окомкованием. Сырые окатыши 4 подают в аппарат сушки 5, в который подают также поток нагретого природного газа 6. В процессе сушки образуется поток нагретой парогазовой смеси 7, а сухие окатыши 8 подают в аппарат окислительного обжига 9, в который также подают нагретый воздух 10, образующийся в горелке 12 при подаче воздуха 11 к конвертированному газу, поступающему из узла разделения газа 13.

Сушку окомкованного сырья (сырых окатышей красного шлама) 4 ведут за счет его контактирования в аппарате сушки 5 с природным газом 6, нагретым до температуры 260-450°C.

Основное упрочнение окатышей 8 происходит в аппарате окислительного обжига 9 при нагреве до температуры от 1000 до 1300°C, вызывающем собирательную рекристаллизацию Fe2O3. Нагрев обеспечивается в том числе и энергией окисления магнетита. Прочность окисленных окатышей 14 при восстановлении в реакторе восстановительного обжига 15 зависит от скорости нагрева окатышей 8 до температуры обжига. Так, при превышении «критической» скорости нагрева (90-130°C/мин) прочность окисленных окатышей 14 снижается в 2-3 раза, что объясняется незавершенностью окисления и наличием двухзонной структуры окатышей. Однако основным фактором, влияющим на поведение окатышей при восстановлении в реакторе восстановительного обжига 15, в котором используется водородсодержащий газ продуктов адиабатической каталитической конверсии 20, является структура, определяющая скорость восстановления окатышей. Чем выше удельная поверхность и средний размер пор, тем более вероятно протекание восстановления во всем объеме окатыша и тем выше скорость восстановления (металлизации) в реакторе восстановительного обжига 15, ниже прочность и выше разрушаемость окатышей. Так, для окатышей различного состава установлена следующая взаимосвязь прочности при восстановлении и скорости восстановления (водородом при 800°C): Рг=P0e-kR, где Рг - горячая прочность окатышей, H/окатыш; R - скорость восстановления (по кислороду), %/мин; P0 - начальная прочность окатышей, нагретых в нейтральной среде до температуры восстановления (близка к величине холодной прочности), H/окатыш; k - коэффициент, зависящий от состава окатышей [http://emchezgia.ru/syrye/20.2_Prochnost_okatyshyei_pri_vosstanovlenii.php]. Все мероприятия, обеспечивающие получение в аппарате окислительного обжига 9 окатышей 14 с более плотной структурой, приводят к росту горячей прочности окатышей. В частности, эффективным является получение окатышей с некоторым количеством расплава. Следовательно, образование при обжиге жидкой фазы с нужными свойствами (низкая вязкость, хорошая смачиваемость и др.) благоприятно сказывается на холодной и горячей прочности окатышей 14, определяется составом и анализом данных конкретных условий режима обжига, обеспечивающего получение высокопрочных окатышей 14 при минимальном снижении их восстановимости [Воскобойников В.Г. и др. Общая металлургия - 6-изд., перераб. и доп. - М.: ИКЦ «Академкнига», 2005 - 768 с.].

Окисленные окатыши 14 из аппарата окислительного обжига 9 направляют в реактор восстановительного обжига 15, в который также подают поток продуктов адиабатической каталитической конверсии 20, полученных в реакторе адиабатической каталитической конверсии природного газа 19 из высокотемпературной парогазовой смеси 18, нагретой в высокотемпературном теплообменнике 17 при охлаждении в нем потока газа окислительного обжига 16.

В реакторе восстановительного обжига 15 происходит металлизация окисленных окатышей 14 с образованием металлизованных железорудных окатышей 21, направляемых в металлургическое производство для дальнейшей переплавки в сталь или в доменное производство для получения чугуна.

Выходящий из реактора восстановительного обжига 15 восстановительный газ 22 поступает в узел разделения газа 13, в котором разделяют поток рециркуляции 23, подмешиваемый к исходному потоку продуктов адиабатической каталитической конверсии 20 и поток газа, направляемый для сжигания для нагрева воздуха 11, поступающего в аппарат окислительного обжига. Газы, выходящие из аппарата окислительного обжига 16, подают в высокотемпературный теплообменник 17 для нагрева высокотемпературной парогазовой смеси 18 до температуры 750-950°C, а затем в среднетемпературный теплообменник 25, в котором проводят нагрев природного газа 26, направляемого затем на сушку окатышей в аппарат сушки 5. Сбросные газы 27 среднетемпературного теплообменника 25 направляют в дымовую трубу или, при недостаточном содержании водяного пара 29 в высокотемпературной парогазовой смеси 18, на получение водяного пара 28 в парогенераторе 29 из питательной воды 30, которая может представлять из себя конденсат водяного пара, получаемый из сбросных газов 27 или потока рециркуляции 23 путем конденсации или абсорбции.

Поток газа, выходящего из аппарата окислительного обжига 9, могут подавать как на нагрев природного газа 26, так и на получение и перегрев водяного пара 28, подаваемого на смешение с природным газом или потоком нагретой парогазовой смеси 7, направляемой в высокотемпературный теплообменник 17. Для выбранного технологического процесса нагрева природного газа 26 и подачи нагретой парогазовой смеси 7 с водяными парами (получаемыми в основном из сырых окатышей при их контакте с нагретым природным газом 6) определены следующие значения теплофизических характеристик потоков, в расчете на подачу 10 т/ч восстановительного газа, см. Таблицу 2.

Таблица 2
№ потока 18 20
Наименование потока Нагретая парогазовая смесь 18 Продукты адиабатической каталитической конверсии 20
Масс. расх., кг/ч - 10000
Давление (изб.), ати 3.0 2.6
Температура, °C 750 620
Молярная масса, кг/кмоль - 17,65
Плотность (р.у.), кг/м3 - 9,136
Динамическая вязкость (р.у.), Па-с - 2,15E-05
Энтальпия, кДж/час - -2,516E7
Теплопроводность, Вт/(м-К) - 7,142E-2
Теплоемкость, Дж/(моль-К) 43,70 43,70
Соотношение пар:газ 4 4
Состав (% об.): % влажного газа % сухого газа
Диоксид углерода, CO2 0,013 7,590
Оксид углерода, CO 0,000 0,275
Водород, H2 0,000 30,714
Азот, N2 0,156 0,538
Аргон, Ar 0,000 0,000
Вода, H2O 80,000 0,000
Метан, CH4 19,767 60,883
Этан, C2H6 0,048 0,000
Пропан, C3H8 0,011 0,000
Бутан, C4H10 0,003 0,000
Пентан, C5H12 0,001 0,000
Всего 100,000 100,000

На выходе из реактора адиабатической каталитической конверсии природного газа 19 в продуктах адиабатической каталитической конверсии 20 поддерживают соотношение водород:моноксид углерода на уровне не ниже 4-8 с целью снижения образования сажи по реакции Будуара, что может ухудшить скорость восстановления окатышей 14 в реакторе восстановительного обжига 15.

Влияет на процесс восстановления окатышей 14 в реакторе восстановительного обжига 15 также и образование сажи согласно реакции (1):

, что также может понизить производительность реактора восстановительного обжига 15.

Учитывая необходимость снижения работы сжатия потока рециркуляции 23, процесс в реакторе восстановительного обжига 15 ведут при давлении минимально отличном от давления в аппаратах высокотемпературного обжига, которое поддерживают на уровне 0.12-0.26 МПа.

Стадию восстановительного обжига в реакторе восстановительного обжига 15 осуществляют при температуре 750-950°C при регенеративном нагреве восстанавливающего газа продуктов адиабатической каталитической конверсии 20 потоком восстановительного газа 22, выходящего из реактора восстановительного обжига 15.

Восстановительный обжиг в реакторе восстановительного обжига 15 могут проводить при добавлении в смесь окатышей 14 твердого углерода в количестве 0.2-0.4 от веса окатышей 14, подаваемых со стадии окислительного обжига из аппарата окислительного обжига 9. Такая смесь может обладать улучшенной производительностью за счет несущей способности крупнокускового углерода, например кокса.

За счет реализации предложенного способа повышается коэффициент использования углеводородного сырья, снижается расход кокса и создаются технологические возможности по уменьшению затрат на производство железорудных окатышей из красного шлама.


СПОСОБ ПЕРЕРАБОТКИ КРАСНОГО ШЛАМА
Источник поступления информации: Роспатент

Showing 191-200 of 260 items.
08.05.2019
№219.017.490f

Автономная энергетическая установка

Изобретение относится энергетике, а именно к автономным системам энергоснабжения объектов, удаленных от центрального энергоснабжения. Автономная энергетическая установка содержит аппаратный и топливный отсек, расположенные внутри корпуса, первичный источник энергии в виде источника...
Тип: Изобретение
Номер охранного документа: 0002686844
Дата охранного документа: 06.05.2019
09.05.2019
№219.017.4ee4

Жидкий органический сцинтиллятор

Изобретение относитcя к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЯР и ЯЭУ....
Тип: Изобретение
Номер охранного документа: 0002424537
Дата охранного документа: 20.07.2011
09.05.2019
№219.017.4ee7

Устройство для терапии онкологических заболеваний

Изобретение относится к медицинской технике, а именно к устройствам для получения терапевтических и диагностических пучков тепловых и промежуточных нейтронов различной геометрической конфигурации, спектрального состава и интенсивности, применяемых при нейтронной терапии злокачественных опухолей...
Тип: Изобретение
Номер охранного документа: 0002424832
Дата охранного документа: 27.07.2011
09.05.2019
№219.017.4ee9

Жидкий органический сцинтиллятор

Изобретение относится к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЛР и ЯЭУ....
Тип: Изобретение
Номер охранного документа: 0002424536
Дата охранного документа: 20.07.2011
09.05.2019
№219.017.4ef1

Способ управления ядерным реактором

Изобретение относится к области управления ядерными реакторами. Способ управления ядерным реактором заключается в регулировании мощности по сигналам датчиков мощности путем управления по каналу введения положительной реактивности и по каналу введения отрицательной реактивности рабочими органами...
Тип: Изобретение
Номер охранного документа: 0002470392
Дата охранного документа: 20.12.2012
09.05.2019
№219.017.4f1f

Способ очистки теплоносителя тяжеловодного реактора от трития

Изобретение относится к области ядерной энергетики, в частности к очистке теплоносителя тяжеловодных реакторов от трития. Техническим результатом является поддержание содержания трития в тяжеловодном теплоносителе ядерного реактора на низком уровне, что позволит снизить радиационную опасность и...
Тип: Изобретение
Номер охранного документа: 0002456690
Дата охранного документа: 20.07.2012
09.05.2019
№219.017.4ffe

Способ диагностики резонансных пульсаций давления в напорном тракте рбмк при помощи первичного преобразователя шарикового расходомера шторм-32м

Изобретение относится к способам измерения динамики давления в напорном тракте РБМК в различных режимах его эксплуатации, в частности к способам диагностики резонансных пульсаций давления в напорном тракте РБМК. В системах, имеющих средства регулирования, подключенные к входам вычислительного...
Тип: Изобретение
Номер охранного документа: 0002448377
Дата охранного документа: 20.04.2012
09.05.2019
№219.017.5097

Газовый сенсор для индикации оксидов углерода и азота

Изобретение может быть использовано при анализе воздуха на наличие в нем газообразных примесей, в частности оксидов азота и оксида углерода. Газовый сенсор для индикации оксидов углерода и азота включает выполненную из поликристаллического AlO подложку, диоксид олова в составе чувствительного к...
Тип: Изобретение
Номер охранного документа: 0002464554
Дата охранного документа: 20.10.2012
09.05.2019
№219.017.50a5

Устройство детектирования течей пароводяной смеси из трубопровода

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования...
Тип: Изобретение
Номер охранного документа: 0002461807
Дата охранного документа: 20.09.2012
18.05.2019
№219.017.5a84

Способ получения метановодородной смеси

Изобретение относится к области химии и может быть использовано для получения метановодородной смеси, содержащей H и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, для переработки углеводородных газов, а также в хемотермических...
Тип: Изобретение
Номер охранного документа: 0002438969
Дата охранного документа: 10.01.2012
Showing 151-151 of 151 items.
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД