×
09.05.2019
219.017.50a5

УСТРОЙСТВО ДЕТЕКТИРОВАНИЯ ТЕЧЕЙ ПАРОВОДЯНОЙ СМЕСИ ИЗ ТРУБОПРОВОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженного притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, при этом устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации. 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, более конкретно - к детектированию течей пароводяной смеси из трубопроводов, установленных в помещениях, снабженных притоком воздуха, например на АЭС. Применение изобретения позволяет реализовать раннее обнаружение аварийных ситуаций и провести диагностику предаварийных состояний, связанных с появлением и развитием дефектов, приводящих к появлению течей в трубо- и паропроводах.

В настоящее время для детектирования течей из трубопроводов применяются акустические методы контроля наличия течей, основанные на анализе акустических сигналов, распространяющихся по трубопроводам, либо на регистрации акустических шумов, генерируемых при истечении среды через образовавшийся дефект (патент РФ №2221230, 21.09.2001, опубл. 10.01.20004; заявка №96101920, 29.01.1996, опубл. 10.04.1998; патент РФ №2186356, 27.07.2002; С.Б.Шиманский, Б.П.Стрелков, А.Н.Ананьев, А.Н.Любишкин, Т.Инджимо, X.Мочидзуки, И.Касан, К.Йокота, Дж.Каназава. Акустический метод обнаружения течи с помощью высокотемпературных микрофонов. «Атомная энергия», 2005, т.98, с.98-104). Недостатком этих методов является низкая достоверность детектирования, связанная с наличием постоянных акустических шумов.

Известны также методы и устройства для контроля наличия течей, основанные на измерении величины относительной влажности и ее сравнении с ранее измеренными значениями (патент РФ №2268509, пр. 09.02.2004, патент РФ №2271045, пр. 26.07.2004, система контроля влажности FLUS компаний Siemens - Framatom ANP: http://pepei.pennnet.com/displav_article/176783/6/ARCHI/none/PRODJ/1/ Framatome-ANP-Installs-FLUS-System-in-first-US-nuclear-power-plant/). Недостатком этого метода и устройств по его реализации является инерционность, низкая чувствительность и принципиальная невозможность регистрации каких-либо сигналов в условиях 100% относительной влажности.

Наиболее близким по технической сущности и достигаемому результату является способ детектирования течей трубопроводов реакторных установок атомных электростанций, реализованный в устройстве для детектирования течей трубопроводов реакторных установок атомных электростанций (патент РФ №2268509), заключающийся в том, что периодически измеряют значение относительной влажности в контролируемом помещении, через которое проходят трубопроводы реакторной установки, сравнивают измеренное значение относительной влажности с предыдущими значениями и по изменению относительной влажности судят о наличии течи. При этом устройство для реализации способа детектирования течей пароводяной смеси из трубопроводов, установленных в помещении, снабженном притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, включающим в себя блок сравнения величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика, соединенный с блоком сигнализации, срабатывающим, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи.

Недостатком указанного способа детектирования течей трубопроводов реакторных установок атомных электростанций и реализующего его устройства также является большая инерционность, низкая чувствительность и невозможность регистрации каких-либо сигналов в условиях 100% относительной влажности, причем последний недостаток носит принципиальный характер.

Технической задачей настоящего изобретения является повышение чувствительности измерений, увеличение быстродействия и обеспечение возможности проведения измерений даже в условиях 100% относительной влажности, и тем самым повышение надежности и информативности измерений при контроле наличия течей трубопроводов.

Технический результат достигается тем, что в способе детектирования течей пароводяной смеси из трубопровода, установленного в контролируемом помещении, снабженном притоком воздуха, заключающемся в том, что периодически измеряют значение относительной влажности в контролируемом помещении,

сравнивают измеренное значение относительной влажности с предыдущими значениями и по изменению относительной влажности судят о наличии течи,

дополнительно периодически измеряют значения счетной концентрации и функции распределения по размерам частиц аэрозолей в воздухе контролируемого помещения,

сравнивают измеренные значения с предыдущими и о наличии течи судят в первую очередь по изменению счетной концентрации частиц аэрозолей в воздухе контролируемого помещения,

причем дополнительно оценивают величину течи по измеренным значениям относительной влажности, счетной концентрации и функции распределения по размерам частиц аэрозолей в воздухе контролируемого помещения.

Этот технический результат достигается и в случае, если описанный способ детектирования течей пароводяной смеси из трубопровода, установленного в контролируемом помещении, реализуется при 100% относительной влажности.

Технический результат для устройства достигается тем, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженном притоком воздуха, включающее датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, включающим в себя блок сравнения величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика, соединенный с блоком сигнализации, срабатывающим, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.

Сущность изобретения поясняется чертежами.

На фиг.1 приведена принципиальная схема устройства для детектирования течей пароводяной смеси из трубопровода, где 1 - устройство обработки информации, 2 - лазерный датчик аэрозолей, 3 - датчик относительной влажности, 4 - пробоотборная трубка, 5 - блок сравнения величины сигнала лазерного датчика аэрозолей, 6 - блок сравнения сигнала относительной влажности, 7 - база данных, 8 - блок сигнализации, 9 - блок вычисления корреляций.

На фиг.2 представлены результаты измерений дисперсного состава и счетной концентрации частиц аэрозолей, измеренные в помещении с моделируемой утечкой пара (см. пример 1 реализации способа) на расстоянии 5 метров от источника пара. Точка отбора пробы находится в месте выхода воздушного потока из помещения.

Результаты измерений представлены в виде объемной диаграммы: дискретными вертикальными столбцами показаны значения концентрации частиц аэрозолей (част/л), построенными на горизонтальной плоскости, ограниченной осями значений: диаметр частиц и время измерения.

На фиг.3 представлена зависимость от времени измерений общей счетной концентрации частиц аэрозолей (столбики гистограммы) и влажности (точки графика на кривой) в помещении с моделируемой утечкой пара (см. пример 1 реализации способа).

На фиг.4 приведены результаты измерения генерации водных аэрозолей (т.е. зависимости счетной концентрации частиц от времени) при нарушении герметичности паропровода при 100% влажности - (см. пример 2 реализации способа). Сплошной линией показаны результаты для частиц размером 0,3 мкм, звездочками - результаты для частиц размером 0,5 мкм и точками - результаты для частиц 1,0 мкм.

На фиг.5 представлены результаты измерений дисперсного состава (ось мкм) и счетной концентрации (ось InN) частиц водных аэрозолей, образующихся при истечении пароводяной смеси через отверстия различных диаметров (d) (при различных значениях относительной влажности (ось %)) - см. пример 3 реализации способа.

Результаты на фиг.5а соответствуют d=1 мм, на фиг.5b - значению d=1,5 мм, на фиг.5с - значению d=2,5 мм, на фиг.5d - значению d=3,5 мм, на фиг.5е - значению d=4 мм и на фиг.5f- значению d=4,8 мм.

Устройство работает следующим образом.

Воздух из помещения, через которое проходит трубопровод, прокачивается насосом лазерного датчика аэрозолей (2) через пробоотборную трубку (4) и поступает в измерительный объем датчика аэрозолей. Частицы, взвешенные в воздухе, проходят через лазерный луч и рассеивают часть лазерного излучения. Геометрия измерительного объема подбирается таким образом, что чисто статистически частицы пролетают через лазерный луч поодиночке. Таким образом, количество импульсов рассеянного света дает счетную концентрацию частиц, и измерение амплитуды импульсов позволяет определить их размер. Информация о результатах измерений передается в блок сравнения величины сигнала лазерного датчика аэрозолей (5), где происходит, во-первых, сравнение уровня сигнала с предыдущими измеренными значениями (определение тренда), во-вторых, сравнение с информацией из базы данных (7), которая содержит результаты измерений при различной влажности и различной интенсивности генерации пароводяной смеси, подобные представленным на фиг.5. В случае, если сравнение уровня сигнала с предыдущими измеренными значениями или анализ сопоставления с информацией из базы данных не соответствует заданным устройству обработки информации (1) значениям, на блок сигнализации (8) подается команда на включение той или иной команды оповещения оператора либо на подачу управляющего сигнала исполнительным механизмам.

Одновременно с этим датчик относительной влажности (3) измеряет величину относительной влажности, передает результат в блок сравнения сигнала относительной влажности (6), где также происходит сравнение величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика. В случае, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, также на блок сигнализации (8) подается команда на включение той или иной команды оповещения оператора.

При этом результаты как из блока сравнения (5), так и из блока сравнения (6) поступают в блок вычисления корреляций (9), где информация из двух каналов сравнивается. При условии совпадения результатов (сигнал нештатной ситуации) соответствующее оповещение также подается на блок сигнализации (8). Естественно, что совпадение результатов из двух независимых каналов указывает на наступление (или развитие) нештатной ситуации значительно более достоверно.

Важно, что при достижении 100% относительной влажности, когда датчики влажности перестают работать, в то время как регистрация лазерным датчиком образующихся при истечении пароводяной смеси в помещение частиц водного аэрозоля продолжается (см. пример №2 реализации способа).

Введение дополнительных элементов, образующих второй информационный канал, регистрирующий счетную концентрацию и размеры частиц аэрозолей в воздухе контролируемого помещения, позволяет значительно (на порядок) повысить чувствительность измерений (см. пример №1 реализации способа и фиг.3) и, соответственно, увеличить быстродействие устройства. При истечении пароводяной смеси через дефект в трубопроводе интенсивность генерации частиц водного аэрозоля зависит от геометрических размеров дефекта трубопровода (см. пример №3 реализации способа), что сразу же позволяет делать выводы о величине течи.

При реализации способа лазерный датчик аэрозолей снабжается пробоотборной трубкой, что позволяет вынести его в другое помещение, через которое не проходит трубопровод, и тем самым значительно снизить радиационную нагрузку на датчик. Такое техническое решение возможно и для датчика влажности, однако при этом транспортировка пробы приводит к ослаблению сигнала (значения относительной влажности) из-за охлаждения среды. В то же время транспортировка воздуха из помещения с трубопроводами в помещение к лазерному датчику аэрозолей не сказывается на информативности измерений - при охлаждении пробы происходит дополнительная конденсация пара на ядрах конденсации и ослабления сигнала не происходит. Эта закономерность была доказана авторами экспериментально с использованием пробоотборных трубок длиной вплоть до 12 м.

Наконец, вычисление корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей (преимущественно водных) в воздухе контролируемого помещения позволяет не только повысить достоверность измерений каждого из отдельных каналов (влажностного и аэрозольного), но и полностью соответствует требованиям «Руководства по применению концепции безопасности «течь перед разрушением» к трубопроводам АЭУ» (Р-ТПP-01-99), в соответствии с которыми общая система контроля течей ядерных энергетических установок должна использовать, по крайней мере, три независимые дополняющие друг друга системы, осуществляющие контроль по разным физическим параметрам (третьей, обязательной системой является контроль радиационной активности).

Примеры реализации способа.

Пример 1

Высокая эффективность применения мониторинга аэрозолей для обнаружения течей и дефектов паропроводов была подтверждена в ходе экспериментальных исследований дисперсного состава и счетной концентрации частиц аэрозолей в помещении с моделируемой утечкой пара.

Эксперименты проводились непосредственно в технологическом помещении площадью 60 м2, снабженном системой приточной вентиляции и очистки воздуха. В помещении были установлены несколько единиц технологического оборудования, поэтому как условия распространения воздушных потоков, так и чистоту воздуха в помещении можно считать хорошо соответствующими реальным условиям технологических помещений. Измерялась счетная концентрация и дисперсный состав частиц в помещении. Результаты измерений суммарной счетной концентрации представлены на фиг.2.

По результатам целой серии опытов (включенная или выключенная вентиляция, измерения вблизи парогенератора, на максимально возможном расстоянии, при мониторинге суммарного воздушного потока из помещения) можно отметить, что даже в условиях значительного разбавления генерируемых водных частиц в воздушном объеме помещения удалось очень быстро (через 4 минуты после начала генерации пара) четко зафиксировать существенный (в 5-7 раз) рост концентрации аэрозольных частиц, в особенности субмикронных размеров частиц. При этом датчик влажности, установленный в том же помещении, зафиксировал лишь незначительные колебания величины относительной влажности (см. график на фиг.3).

Таким образом, методами аэрозольного мониторинга воздуха в помещении удалось уверенно зарегистрировать утечку пара в помещении на стадии, когда датчики влажности фактически еще не успевали зафиксировать изменение величины влажности воздуха. Более того, этот эффект воспроизводился и при мониторинге суммарного воздушного потока из помещения, т.е. при значительном разбавлении.

Пример 2

Проводились экспериментальные измерения генерации водных аэрозолей при нарушении герметичности паропровода в условиях 100% влажности. В камере поддерживалась 100% относительная влажность, при этом в нее периодически дополнительно подавалась пароводяная смесь из специального генератора-имитатора течи. Из фиг.4 видно, что поступающие в камеру водные частицы уверенно регистрировались датчиком аэрозолей во всех размерных диапазонах. При выключении имитатора течи счетная концентрация частиц падала в несколько раз. Величина относительной влажности при этом оставалась неизменной (100%).

Пример 3

Исследовались дисперсный состав и счетная концентрация частиц водных аэрозолей, образующихся при истечении пароводяной смеси через отверстия различных диаметров (d) при различных значениях относительной влажности. Результаты измерений представлены на фиг.5. Отчетливо видна зависимость счетной концентрации частиц (ось InN) различного размера (ось «мкм») не только от значения относительной влажности (ось «%»), но и от размера отверстия, имитировавшего дефект трубопровода. Наборы данных, подобных приведенному на фиг.5, могут сохраняться в базе данных и использоваться при вычислении корреляций между значениями относительной влажности, счетной концентрации и размерами частиц водных аэрозолей в воздухе контролируемого помещения. Кроме того, данные подобных измерений позволяют делать выводы не только о наличии дефекта, но и о величине течи.

Таким образом, применение настоящего изобретения приводит к повышению чувствительности измерений и увеличению быстродействия, тем самым повышая достоверность и информативность измерений при контроле наличия течей трубопроводов. При этом обеспечивается возможность проведения измерений даже в условиях 100% относительной влажности. Применение изобретения позволяет реализовать раннее обнаружение аварийных ситуаций и провести диагностику предаварийных состояний, связанных с появлением и развитием дефектов, приводящих к появлению течей в трубо- и паропроводах, прежде всего ядерных энергетических установок и реакторов.

Устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженном притоком воздуха, включающее датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, включающим в себя блок сравнения величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика влажности, соединенный с блоком сигнализации, срабатывающим, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, отличающееся тем, что устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.
Источник поступления информации: Роспатент

Showing 1-10 of 259 items.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
Showing 1-10 of 11 items.
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
10.05.2013
№216.012.3ed7

Тепловыделяющий элемент для ядерных водо-водяных реакторов и способ его изготовления

Изобретение относится к ядерной энергетике и может быть использовано для изготовления твэлов преимущественно для ядерных водо-водяных энергетических реакторов (ВВЭР). Технический результат заключается в повышении безопасности твэла, его упрощении и снижении экономических затрат на его...
Тип: Изобретение
Номер охранного документа: 0002481654
Дата охранного документа: 10.05.2013
27.01.2014
№216.012.9c89

Способ регистрации трещин в хрупких тензоиндикаторах

Использование: для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня нагруженности в исследуемых зонах конструкции. Сущность изобретения заключается в том, что выполняют акустико-эмиссионные измерения сигналов образования трещин в хрупком тензопокрытии с...
Тип: Изобретение
Номер охранного документа: 0002505779
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c8a

Способ исследования деформации и напряжений в хрупких тензоиндикаторах

Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия,...
Тип: Изобретение
Номер охранного документа: 0002505780
Дата охранного документа: 27.01.2014
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
29.05.2018
№218.016.58ad

Способ создания лазерного излучения и лазер, реализующий этот способ

Изобретение относится к лазерной технике. Для создания лазерного излучения используют газоразрядную камеру, установленную на ее выходе ионно-оптическую систему для формирования ускоренного пучка ионов, лазерный резонатор, в котором устанавливают узел перезарядки, представляющий проводящее...
Тип: Изобретение
Номер охранного документа: 0002653567
Дата охранного документа: 11.05.2018
18.01.2019
№219.016.b124

Способ постоянного поэлементного дублирования в цифровых транзисторных микросхемах

Изобретение относится к способам поэлементного дублирования в нано- и микроцифровых транзисторных микросхемах, подвергающихся воздействию радиации. Технический результат: существенное повышение отказоустойчивости микросхем по сравнению со способом дублирования без использования четырехкратного...
Тип: Изобретение
Номер охранного документа: 0002677359
Дата охранного документа: 16.01.2019
04.04.2019
№219.016.fca0

Способ получения сверхтонких пленок кремния на сапфире

Изобретение относится к микроэлектронике. Сущность изобретения: в способе получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, производят аморфизацию...
Тип: Изобретение
Номер охранного документа: 0002427941
Дата охранного документа: 27.08.2011
19.06.2019
№219.017.88ae

Способ резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения

Изобретение относится к области электротехники, в частности к способам резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения. В предлагаемом способе активный объект работает при нормальной для него температуре, а идентичный ему резервный объект выключен....
Тип: Изобретение
Номер охранного документа: 0002413281
Дата охранного документа: 27.02.2011
+ добавить свой РИД