×
10.01.2015
216.013.1832

Результат интеллектуальной деятельности: СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих, взятых в следующем соотношении, мас.%: металлическая - 10-30, оксидная - остальное. Оксидная составляющая включает смесь двух или более микроразмерных порошков оксидов, выбранных из ряда: оксид никеля, оксид железа, оксид меди, оксид хрома. Металлическая составляющая включает микроразмерные порошки меди или сплава на основе меди, а также содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм. Изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850 °C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава. 4 ил., 2 табл., 1 пр.
Основные результаты: Состав шихты для изготовления оксидно-металлического инертного анода, включающий оксидную составляющую из смеси двух и более микроразмерных порошков оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую составляющую, включающую микроразмерные порошки меди или сплава на основе меди, отличающийся тем, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм при соотношении оксидной и металлической составляющих, мас.%:

Изобретение относится к цветной металлургии и может быть использовано для изготовления композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности алюминия из оксидно-фторидных расплавов при пониженных температурах.

Известен состав шихты для изготовления оксидно-металлического инертного анода для электролитического получения алюминия (патент CN 101255569, опубл. 03.09.2008 г.) [1]. Шихта содержит порошки оксида железа, никеля, металлической меди при следующем соотношении компонентов, мас.%:

оксид железа 35-36
оксид никеля 47-50 (в т.ч. наноразмерная фракция 4-14 мас.%)
металлическая медь 14,8-15,1

Изготовленный из шихты известного состава инертный анод при температуре 1000°C обладает высокой удельной электропроводностью - свыше 100 См/см, хорошо подвергается механической обработке, формованию и может быть использован при промышленном электролитическом получении алюминия. Однако при понижении температуры электролиза до 800-900°C происходит снижение его электропроводности до 20-40 См/см, приводящее к быстрой коррозии анода. Это затрудняет либо исключает длительное использование известного инертного анода при этих температурах.

Известна шихта для изготовления оксидно-металлического инертного кислородвыделяющего анода для электролитического получении алюминия (патент RU 2106431, опубл. 10.03.1998 г.) [2]. Шихта содержит металлическую и оксидную составляющие, в мас.%: NiO-NiFe2O4 - 73-83; CuO - 10-20; порошок меди 2-12; углеродный полимер - 1-2.

При изготовлении анода из известной шихты в нем образуется металлическая фаза, содержащая 15-20 мас.% меди. Такой оксидно-металлический анод при температуре выше 950°C характеризуется высокой удельной электропроводностью - 70-400 См/см, и низкими коррозионными токами в оксидно-фторидном расплаве при термодинамическом потенциале выделения кислорода от 5-10 до 70-80 мА/см2. Однако такие важные технологические параметры инертного анода, как удельная электропроводность и плотность тока коррозии, являются невоспроизводимыми. Это указывает на неравномерное распределение оксидной и металлической фаз в оксидно-металлическом аноде, что отрицательно сказывается на его коррозионной стойкости и чистоте получаемого алюминия.

Наиболее близкой к заявляемому изобретению является шихта для изготовления оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности алюминия (патент RU 2401324, опубл. 10.01.2010 г.) [3]. Шихта содержит 5-30 мас.% металлической составляющей, состоящей из меди, или сплава на основе меди и оксидную составляющую из смеси двух и более оксидов из ряда оксидов никеля, железа, меди, хрома. При этом оксидная составляющая содержит оксиды железа и никеля, а также дополнительно включает 1-80 мас.% оксида меди и/или хрома.

Инертный анод, изготовленный из известной шихты, имеет низкую скорость коррозии, а алюминий, полученный электролизом оксидно-фторидного расплава с использованием этого анода, низкое содержание примесей - 0,156-0,188 мас.%. Однако, как показали исследования, для этого анода характерно неравномерное распределение металлической и оксидной фаз по объему, которое может приводить к локальным выкрашиваниям материала из тела анода, изменению удельной электропроводности и пористости, а также к нестабильной работе анода в условиях длительного электролиза.

Из анализа известных составов шихты [1, 2, 3] следует, что шихта для изготовления оксидно-металлических инертных анодов, как правило, состоит из микроразмерных порошков с размером частиц 10-50 мкм. При этом разница в показателях удельной электропроводности разных участков в объеме анода, а также снижение удельной электропроводности анода при снижении температуры электролиза свидетельствуют о том, что включения меди или сплава на основе меди в объеме анода распределены неравномерно. Это приводит к неравномерному распределению тока по поверхности анодов, появлению очагов катастрофической коррозии, локальным перегревам в условиях высоких токовых нагрузок, быстрому разрушению анода в целом, а также негативно сказывается на чистоте получаемого алюминия.

Задача настоящего изобретения заключается в увеличении ресурса работы оксидно-металлического анода, применяемого для низкотемпературного электролиза алюминия.

Для решения поставленной задачи оксидно-металлический инертный анод изготавливают из шихты, включающей оксидную составляющую из смеси двух и более оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую, состоящую из меди или сплава на основе меди при том, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка металла крупностью до 100 нм, при этом оксидная и металлическая составляющие шихты взяты в следующем соотношении, мас.%: металлическая составляющая 10-30; оксидная составляющая - остальное.

Установлено, что устойчивость структуры и более равномерное распределение компонентов в изготовленном оксидно-металлическом аноде достигается за счет добавки наноразмерного порошка меди или сплава на основе меди в размере от 2 мас.% в состав исходной шихты. По данным микрорентгеноструктурного анализа при добавке в шихту менее 2 мас.% наноразмерного порошка меди или сплава на основе меди эффект улучшения распределения компонентов в изготовленном оксидно-металлическом аноде не наблюдается. При повышении доли указанного наноразмерного порошка в исходной шихте выше 10 мас.% в ходе изготовления анода происходит частичная коагуляция наноразмерных частиц до микроразмерных конгломератов, и влияние дальнейшего увеличения доли наноразмерных частиц металла в шихте на равномерность распределения компонентов в изготавливаемом оксидно-металлическом аноде становится незначительным. В свою очередь устойчивость структуры и более равномерное распределение компонентов в аноде положительно сказывается на стабильности удельной электропроводности инертного анода в ходе длительного электролиза. Указанное соотношение содержания металлической и оксидной составляющих в заявляемой шихте выбрано экспериментальным путем при достижении наибольших значений удельной электропроводности изготавливаемого анода, обеспечении стабильности структуры и наименьшей растворимости его компонентов в оксидно-фторидном расплаве.

Таким образом, новый технический результат, достигаемый заявленным изобретением, заключается в более равномерном распределении металлической и оксидной составляющих в объеме оксидно-металлического анода и обеспечении его высокой удельной электропроводности.

Заявленное изобретение иллюстрируется следующими чертежами. На фиг.1 представлена микрофотография спеченного композита (25,3)NiO-(41,2)Fe2O3-(13,5)Cr2O3-(20)Cu (мас. %), изготовленного из оксидных порошков с добавлением порошка металлической меди, содержащего фракцию не более 100 нм в количестве 3 мас.%. Размер порошков основной и металлической фракции составляет 10 до 45 мкм. Для сравнения на фиг.2 приведена микрофотография композита аналогичного химического состава, полученного из шихты по прототипу [3], содержащей порошок меди размером от 10 до 45 мкм. На фиг.3 представлена микрофотография спеченного композита (25,3)NiO-(41,2)Fe2O3-(13,5) Cr2O3-(18)Cu-(2)Ag (мас.%), изготовленного из оксидных порошков с добавлением порошка сплава меди и серебра, содержащего фракцию не более 100 нм в количестве 5 мас.%. Размер порошков основной и металлической фракций составляет 10 до 45 мкм. Для сравнения на фиг.4 представлена микрофотография аналогичного химического состава, полученного из шихты по прототипу [3], изготовленного из оксидных порошков с добавлением порошка сплава меди и серебра, содержащего фракцию не более 100 нм в количестве 5 мас.%. Размер порошков основной и металлической фракций составляет 10 до 45 мкм. В таблице 1 приведены физические свойства композитов, полученных из шихты по прототипу [3] (номера в таблице 1-5), а также композитов аналогичного химического состава с добавлением наноразмерного порошка металлической меди, а также сплава на основе меди, в соответствии с заявляемой шихтой (номера в таблице 6-10). В таблице 2 представлены результаты исследования коррозионного поведения композитных анодов, изготовленных из известной [3] и заявляемой шихт, при электролизе оксидно-фторидного расплава, мас.%: 12NaF-36,8KF-51,2AlF3, насыщенного Al2O3 (5-7 мас.%), 800°C.

Заявляемая шихта составов 1-3 была получена путем равномерного перемешивания порошка металлической меди с содержанием наноразмерного (не более 100 нм) порошка меди 2, 5 и 10 мас. % (образцы 6-8 таблицы 1 и 2) и порошков оксидов железа, меди, никеля и хрома. Аналогично была получена шихта составов 4 и 5, содержащая металлическую фракцию сплава из смеси металлических порошков меди и никеля, а также меди и серебра с содержанием наноразмерного (не более 100 нм) порошка меди и никеля, а также порошка меди и серебра 5 мас. % (таблицы 1 и 2, образцы 9, 10) и порошков оксидов железа, меди, никеля и хрома.

Из полученной шихты были изготовлены оксидно-металлические композитные аноды в виде брусков размерами 10×10×80 мм ультразвуковым перемешиванием исходных порошков в органическом растворе, включая их седиментацию, фильтрование, сушку, формование, холодное прессование, спекание в атмосфере аргона, охлаждение и механическую обработку.

В ходе спекания методом твердофазного синтеза были получены аноды со структурой, устойчивой при электролизе в интервале температур 750-950°C.

Для сравнительного анализа были использованы оксидно-металлические аноды, изготовленные из известной шихты [3], см. таблицы 1 и 2.

Из фиг. 1, 2, а также из фигур 3, 4 видно, что анод, изготовленный из заявляемой шихты, характеризуется более равномерным распределением металлической и оксидной фаз по объему по сравнению с анодом, изготовленным из шихты состава по прототипу.

Удельную электропроводность оксидно-металлических анодов определяли четырехзондовым методом в атмосфере аргона при 750-950°C. Из таблицы 1 следует, что с понижением температуры электролиза с 950 до 750°C снижение значений удельной электропроводности оксидно-металлических анодов, изготовленных из заявляемой шихты, является существенно меньшим по сравнению с анодами, изготовленными из шихты по прототипу.

Коррозионный ток анодов, изготовленных из известной [3] и заявляемой шихт, определяли из стационарных поляризационных кривых, полученных путем измерения и фиксации анодной плотности тока при пошаговом увеличении анодного перенапряжения в лабораторном электролизере. После этого аноды испытывали при электролизе оксидно-фторидного расплава 72NaF-36,8KF-51,2AlF3, насыщенного Al2O3(5-7 мас. %), 800°C в течение 72 часов в лабораторном электролизере. Анодная плотность тока составляла 0,4 А/см2 (10 А). Алюминий выделялся на катоде из диборида титана и скапливался на дне алундового контейнера. По окончании электролиза расплав и алюминий анализировали на содержание компонентов анода спектрально-эмиссионным методом с высокочастотной индуктивно-связанной плазмой. По количеству примесей в катодном алюминии и электролите были оценены значения скоростей растворения анодов. Из таблицы 2 видно, что скорость растворения оксидно-металлических анодов, изготовленных из заявляемой шихты, ниже скорости растворения инертного анода, изготовленного из известной шихты [3].

Таким образом, благодаря более равномерному распределению металлической и оксидной составляющих в оксидно-металлическом аноде заявляемое изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850°C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава.

Состав шихты для изготовления оксидно-металлического инертного анода, включающий оксидную составляющую из смеси двух и более микроразмерных порошков оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую составляющую, включающую микроразмерные порошки меди или сплава на основе меди, отличающийся тем, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм при соотношении оксидной и металлической составляющих, мас.%:
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
Источник поступления информации: Роспатент

Showing 41-50 of 109 items.
20.09.2015
№216.013.7c3b

Способ микролегирования стали бором

Изобретение относится к области черной металлургии и может быть использовано для совершенствования технологии микролегирования стали бором. Микролегирование стали бором осуществляют на выпуске присадкой в ковш алюминия и комплексного сплава ферросиликобора в количестве 4,0-7,5 кг/т стали с...
Тип: Изобретение
Номер охранного документа: 0002563400
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c7a2

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя,...
Тип: Изобретение
Номер охранного документа: 0002578881
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2be7

Способ определения коэффициента диффузии газов в твердых электролитах

Изобретение относится к аналитической технике и может быть использовано для измерения значений коэффициентов диффузии в твердых электролитах, обладающих проводимостью по ионам исследуемых газов, таких, например, как водород, кислород, фтор, хлор и некоторые другие. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002579183
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3b02

Амперометрический способ измерения концентрации аммиака в азоте

Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от...
Тип: Изобретение
Номер охранного документа: 0002583162
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b48

Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит...
Тип: Изобретение
Номер охранного документа: 0002583838
Дата охранного документа: 10.05.2016
Showing 41-50 of 112 items.
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c7a2

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя,...
Тип: Изобретение
Номер охранного документа: 0002578881
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2be7

Способ определения коэффициента диффузии газов в твердых электролитах

Изобретение относится к аналитической технике и может быть использовано для измерения значений коэффициентов диффузии в твердых электролитах, обладающих проводимостью по ионам исследуемых газов, таких, например, как водород, кислород, фтор, хлор и некоторые другие. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002579183
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3b02

Амперометрический способ измерения концентрации аммиака в азоте

Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от...
Тип: Изобретение
Номер охранного документа: 0002583162
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b48

Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит...
Тип: Изобретение
Номер охранного документа: 0002583838
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c7e

Способ измерения влажности воздуха

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и...
Тип: Изобретение
Номер охранного документа: 0002583164
Дата охранного документа: 10.05.2016
+ добавить свой РИД