×
10.09.2014
216.012.f24a

Результат интеллектуальной деятельности: СПОСОБ НЕПРЯМОГО КАПНОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНАЭРОБНОГО ПОРОГА ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ ЧЕЛОВЕКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, а именно к спортивной, подводной и авиакосмической физиологии. Предварительно строят модель зависимости индекса Кердо и соответствующего ему потребления кислорода при разных уровнях физической нагрузки. Впоследствии количество потребления кислорода человеком на уровне аэробно-анаэробного перехода определяют на основании измеренного индекса Кердо, значения мощности нагрузки, количества выдыхаемого диоксида углерода и данных, полученных на этапе построения модели. Способ позволяет определить анаэробный порог физической работоспособности человека на основании измерения дозированной велоэргометрической нагрузки, индекса Кердо и капнометрии. 1 ил., 2 пр.
Основные результаты: Способ определения анаэробного порога физической работоспособности человека при дозированной физической работе, заключающийся в том, что предварительно измеряют индекс Кердо и соответствующее ему потребление кислорода при разных уровнях физической нагрузки, на основании модели связи вегетативного индекса Кердо и количества потребления кислорода, в литрах в минуту: z=a·x+a·y+a, где z - задаваемое на измерительном устройстве значение мощности нагрузки, x - измеряемое значение вегетативного индекса Кердо, y - отклик организма в виде количества потребляемого кислорода, л/мин, определяют значения коэффициентов: a, a, a; впоследствии без определения количества потребления кислорода человеком определяют для очередной ступени мощности возрастающей нагрузки анаэробный порог физической работоспособности на основании выполнения равенства , где k - минутный объем выдыхаемого диоксида углерода при постоянном значении нагрузки; z, x - соответствующие значения индекса Кердо; a, a, a - коэффициенты, значения которых предварительно определены.

Изобретение относится к области математической биологии, а именно к спортивной, подводной и авиакосмической физиологии. Предлагаемая методика может быть использована как в спортивных и оздоровительных целях (например, при подготовке спортсменов), так и в целях подготовки и контроля персонала (экипажа), длительное время изолированно пребывающего по роду практической деятельности в условиях подводных и авиакосмических исследований, а также связанных с деятельностью человека, находящегося в экстремальных условиях.

Знание анаэробного порога (АП) человека является одним из важных инструментов оценки физической работоспособности [Попов Д.В., Виноградова О.Л., Григорьев А.И. Аэробная работоспособность человека. М.: Наука, 2012; Аулик И.В. Определение физической работоспособности в клинике и спорте. М.: Медицина. 1979. с.54; Респираторная медицина: в 2 т. / под ред. А.Г. Чучалина. М.: ГЭОТАР-Медиа. 2007. T.1. с.394; Wasserman K., Hansen J.E., Sue D.Y., Stringer W.W., Whipp B.J., Casaburi R. Principles of exercise testing and interpretation. 2 ed. Lea&Febiger. 1994. Р.27], а также исследования жизнедеятельности экипажей гермообъектов [Олизаров В.В. Системы обеспечения жизнедеятельности экипажей летательных аппаратов. Под ред. В.А. Боднера. М.: Издание ВВИА им. Н.Е. Жуковского, 1962. С.10]. Колебания изменений работоспособности во время длительной изоляции в гермообъекте зависят от режима сна-бодрствования, режима физических тренировок, а также внутренних физиологических ритмов вегетативной нервной системы (суточных, синодических, сезонных) испытателя.

Известны разные респираторные и биохимические методы оценки АП работоспособности [Wasserman K., Hansen J.E., Sue D.Y., Stringer W.W., Sietsema K., Sun X.G., Whipp B.J. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5 ed. Lippincott Wiliams&Wilkins. 2012 - прототип]. Однако применение известных методов подразумевает либо частое взятие крови для определения в ней лактата, либо обязательное наличие оксиметрической газоаналитической аппаратуры, калибровочного оборудования к ней, замену комплектующих, например кислородных полярографических датчиков, имеющих ограниченный срок службы. В свою очередь, калибровочное оборудование включает наличие сосудов под высоким давлением, использование которых согласно содержанию требований норм к безопасности может быть недопустимо в условиях барокамер и других гермообъектов, включая космические летательные аппараты (КЛА). Кроме того, даже простая транспортировка баллонов с калибровочными газами под высоким давлением в труднодоступные места, например, в околоземное пространство, сопряжена с высоким риском и является дорогостоящей.

Изобретенный нами метод определения анаэробного порога (вентиляторного порога 1) человека полностью исключает необходимость в транспортировке оксиметрического оборудования в космос и другие труднодоступные места и обходится использованием капнометрической аппаратуры и данных мониторинга, доступных из медконтроля показателей гемодинамики (ЧСС и АД). Высокая временная стабильность характеристик современных инфракрасных капнометрических датчиков исключает необходимость частой калибровки эталонными газами в эксплуатации [Зислин Б.Д., Чистяков А.В. Мониторинг дыхания и гемодинамики при критических состояниях. Екатеринбург: Сократ. 2006. С.115; Шурыгин И.А. Мониторинг дыхания: пульсоксиметрия, капнография, оксиметрия. СПб.: Невский Диалект; М.: Издательство БИНОМ, 2000. С.102].

Известно также, что косвенные результаты измерений могут быть не менее точными, чем результаты прямых измерений. Такой подход в естествознании известен и описан [Бурмистров Г.А. Основы способа наименьших квадратов. М.: Государственное научно-техническое издательство литературы по геологии и охране недр. 1963. С.119-208; Агекян Т.А. Теория вероятностей для астрономов и физиков. Учебное пособие. М.: Наука. 1974. С.197; Мазмишвили А.И. Способ наименьших квадратов. М.: Недра. 1968. С.180-231], применяется в физиологии [Elwyn D.H., Askanazi J., Kinney J.M., Bursztein S. Energy Metabolism, Indirect Calorimetry, and Nutrition. Williams&Wilkins. 1989. 266 p.].

Поэтому, одним из перспективных направлений является изучение взаимосвязи физиологических параметров оптимального функционирования членов экипажей пилотируемых объектов [Шибанов Г.П. Обитаемость космоса и безопасность пребывания в нем человека. М.: Машиностроение. 2007. 544 с.; Ханин М.А., Дорфман Н.Л., Бухаров И.Б. и др. Экстремальные принципы в биологии и физиологии. М.: Наука. 1978. 256 с].

Задачей предлагаемого изобретения является разработка нового способа адекватной оценки анаэробного порога работоспособности без применения дорогостоящей оксиметрической газоаналитической аппаратуры на основании измерения физиологической характеристики вегетативной нервной системы [Кердо И. Индекс, вычисляемый на основе параметров кровообращения для оценки вегетативного тонуса. // Спортивна медицина (Украина). 2009. №1-2. С.33-43] и капнометрии при дозированной физической работе.

Достигаемым техническим результатом является определение анаэробного порога, отражающего состояние физической работоспособности человека на основании измерения мощности нагрузки, дозированной велоэргометром, индекса Кердо и минутного выделения диоксида углерода.

Способ осуществляется следующим образом.

1. Строят модель связи вегетативного индекса Кердо и количества потребления кислорода (в литрах в минуту).

Для чего выполняют измерение индекса Кердо и соответствующего ему потребления кислорода при разных уровнях физической нагрузки: 0, 60, 75, 90 Вт и т.д. вплоть до субмаксимального потребления кислорода.

В качестве модели зависимости нами найдена зависимость:

где z - детерминированное, то есть заведомо задаваемое на измерительном устройстве (например, велоэргометре) значение мощности нагрузки, x - измеряемое значение вегетативного индекса Кердо, y - отклик организма в виде количества потребляемого кислорода (л/мин), a 1, a 2, a 0 - коэффициенты, значения которых находятся для конкретного испытуемого в лабораторных условиях методом наименьших квадратов.

Пример 1. Для испытателя К. уравнение связи в виде линейной функции двух переменных имеет вид:

На фиг.1 представлена трехмерная графическая интерпретация модели (1.2) для испытателя К. Видна наиболее удобная для восприятия точка обзора. По оси абсцисс и ординат соответственно - индекс Кердо и потребление кислорода. По оси аппликат - нагрузка (Вт). Значения коэффициентов a 1=23.06, a 2=82.7, a 0=-28.2 найдены методом наименьших квадратов.

Модель (1.2) является индивидуальной характеристикой организма испытателя К. Для других испытателей с помощью лабораторных экспериментов с использованием метода наименьших квадратов нужно найти их индивидуальные значения характеристик a 1, a 2, a 0.

2. Зная индивидуальную модель испытателя, в случаях, в которых оксиметрическое определение анаэробного порога невозможно или связано со значительными материальными затратами, анаэробный порог работоспособности достигается при выполнении равенства:

где значения коэффициентов a 1, a 2, a 0 определены на этапе построения модели (см. п.1), k - минутный объем выдыхаемого диоксида углерода (л/мин), измеряемый на каждой ступени нагрузки z; x - соответствующее значение индекса Кердо. На каждой ступени вычисляется правая часть выражения (1.3) и сравнивается с измеряемым численным значением k.

В случае физическая работа выполняется при аэробном энергообеспечении.

В случае анаэробный порог работоспособности преодолен, то есть уже включились анаэробные механизмы и работа выполняется при аэробно-анаэробном энергообеспечении.

В случае выполнения равенства (1.3) значение k численно совпадает с минутным объемом потребления кислорода испытуемого на уровне аэробно-анаэробного перехода.

Метод расчета значения АП применим как в случае максимальных, так и в случае субмаксимальных нагрузочных тестов.

С помощью многомерного критерия Фишера-Снедекора нами в 2011-2012 гг. выполнена проверка адекватности метода на 36 практически здоровых испытуемых в ходе фоновых исследований экспериментов ГНЦ Института медико-биологических проблем РАН «Марс-500», «Гелий-11», «Аргон-11», «Аргон-12» и «Климат», одобренных Биоэтической комиссией института.

В результате проверки установлено, что вероятность ошибки метода близка к нулю (≈10-21). Нами установлено, что среди испытателей экспериментов наибольшее зарегистрированное значение анаэробного порога составило 4 л/мин.

В результате численной апробации моделей в экспериментах «Марс-500», «Гелий-11», «Аргон-11», «Аргон-12», «Климат» установлено, что разработанная методика является достаточно точной для решения задач оценки физической работоспособности с целью прогнозирования мощности работы, которую сможет выполнить впоследствии космонавт.

Пример 2. Из измерений на велоэргометре во время ступенчато возрастающей нагрузки известно, что у испытателя эксперимента «Гелий-11» К. при значении нагрузки 180 Вт значение индекса Кердо составило +0.36, выделение диоксида углерода при этом составило 2.1 л/мин, а при значении нагрузки 315 Вт значение индекса Кердо составило +0.52, выделение диоксида углерода составило 3.9 л/мин.

Определяем: В первом случае

и анаэробный порог еще не достигнут, а во втором случае

анаэробный порог достигается, иначе говоря, вентиляторный порог 1 достигнут испытателем К. при нагрузке 315 Вт на уровне потребления кислорода 4 л/мин.

Вместе с тем известно, что в результате прямых оксиметрических измерений данный испытатель при нагрузке 180 Вт и индексе Кердо +0.36 потреблял кислорода 2.40 л/мин, а при нагрузке 315 Вт потреблял кислорода 4.08 л/мин. То есть, предсказанное с помощью модели значение 4.0 л/мин, найденное уже без выполнения измерений оксиметрической газоаналитической аппаратурой количества потребляемого кислорода на уровне анаэробного порога, не отличается от зарегистрированного инструментально результата значения 4.08, найденного с применением оксиметрической аппаратуры.

Вывод. Зная модель (1.1) с найденными методом наименьших квадратов значениями коэффициентов a 1, a 2, a 0 для данного испытателя, определение анаэробного порога с помощью измерения потребления кислорода можно не выполнять, а предсказать заранее достаточно точно по индексу Кердо и результатам капнометрии. Этим методом можно воспользоваться, например, на борту КЛА, где оксиметрическое определение анаэробного порога работоспособности сопряжено с определенными техническими и экономическими трудностями. Кроме того, на борту КЛА всегда имеется штатная капнометрическая аппаратура, предназначенная для мониторирования атмосферы гермообъекта, которая потенциально может быть использована для целей респираторной капнометрии.

Наш способ позволит индивидуально косвенно оценивать работоспособность испытателей (в том числе на борту МКС) без применения оксиметрической газоаналитической аппаратуры, но с применением капнометрической аппаратуры при измерении стандартных при медицинском контроле показателей гемодинамики.

Способ определения анаэробного порога физической работоспособности человека при дозированной физической работе, заключающийся в том, что предварительно измеряют индекс Кердо и соответствующее ему потребление кислорода при разных уровнях физической нагрузки, на основании модели связи вегетативного индекса Кердо и количества потребления кислорода, в литрах в минуту: z=a·x+a·y+a, где z - задаваемое на измерительном устройстве значение мощности нагрузки, x - измеряемое значение вегетативного индекса Кердо, y - отклик организма в виде количества потребляемого кислорода, л/мин, определяют значения коэффициентов: a, a, a; впоследствии без определения количества потребления кислорода человеком определяют для очередной ступени мощности возрастающей нагрузки анаэробный порог физической работоспособности на основании выполнения равенства , где k - минутный объем выдыхаемого диоксида углерода при постоянном значении нагрузки; z, x - соответствующие значения индекса Кердо; a, a, a - коэффициенты, значения которых предварительно определены.
СПОСОБ НЕПРЯМОГО КАПНОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНАЭРОБНОГО ПОРОГА ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ ЧЕЛОВЕКА
СПОСОБ НЕПРЯМОГО КАПНОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНАЭРОБНОГО ПОРОГА ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ ЧЕЛОВЕКА
Источник поступления информации: Роспатент

Showing 11-17 of 17 items.
27.06.2015
№216.013.5a2a

Способ оценки и прогнозирования процессов старения (деструкции) полимерных материалов по динамике суммарного газовыделения и токсичности летучих органических соединений (лос), мигрирующих из полимера в процессе старения, детектируемых методом хроматомасс-спектрометрии

Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения. Анализ летучих органических соединений (ЛОС), мигрирующих из СПМ, проводят путем активного отбора проб на сорбент, с...
Тип: Изобретение
Номер охранного документа: 0002554623
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.62a9

Способ получения концентрата фибриногена

Изобретение относится к биотехнологии получения гемостатических препаратов. Предложен способ выделения очищенного концентрата фибриногена, свободного от вирусов и балластных белков. Осуществляют солюбилизацию криопреципитата свежезамороженной плазмы человека. Осаждают фибриноген 20-30%...
Тип: Изобретение
Номер охранного документа: 0002556804
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6a0c

Слиток для деформирования

Изобретение относится к металлургии. Слиток для деформирования состоит из прибыли 1 и тела 2, имеющего трехлучевое поперечное сечение. Вершины лучей наклонены от головной части к донной части слитка. Угол наклона каждого соседнего луча однонаправлено, по часовой или против часовой стрелки,...
Тип: Изобретение
Номер охранного документа: 0002558701
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.9820

Способ изготовления модельного образца для определения деформаций

Изобретение относится к области измерительной техники, а именно к способу изготовления модельного образца для определения деформаций, и может быть использовано при исследовании напряженно-деформированного состояния металла в прокатном и кузнечно-прессовом производстве. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002570564
Дата охранного документа: 10.12.2015
10.05.2016
№216.015.3b3f

Способ получения концентрата тромбина

Изобретение относится к фармацевтической промышленности, а именно к способу выделения очищенного концентрата тромбина. Способ получения концентрата тромбин, свободного от вирусов, заключающийся в криофракционировании свежезамороженной плазмы донорской крови человека, выделении протромбинового...
Тип: Изобретение
Номер охранного документа: 0002583931
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.b31b

Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии

Изобретение относится к диагностике, а именно к способу определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии. Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии, включающий определение ацетола (гидрооксиацетона C3H6O2 GAS116-09-6) в выдыхаемом...
Тип: Изобретение
Номер охранного документа: 0002613910
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c017

Способ изготовления модельного образца для определения деформаций

Изобретение относится к прокатному и кузнечно-прессовому производству при исследовании напряженно-деформированного состояния металла в различных процессах пластического формоизменения. На поверхности пластин одинаковых размеров из модельного материала выполняют риски треугольного профиля и...
Тип: Изобретение
Номер охранного документа: 0002616671
Дата охранного документа: 18.04.2017
Showing 11-20 of 25 items.
27.06.2015
№216.013.5a2a

Способ оценки и прогнозирования процессов старения (деструкции) полимерных материалов по динамике суммарного газовыделения и токсичности летучих органических соединений (лос), мигрирующих из полимера в процессе старения, детектируемых методом хроматомасс-спектрометрии

Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения. Анализ летучих органических соединений (ЛОС), мигрирующих из СПМ, проводят путем активного отбора проб на сорбент, с...
Тип: Изобретение
Номер охранного документа: 0002554623
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.62a9

Способ получения концентрата фибриногена

Изобретение относится к биотехнологии получения гемостатических препаратов. Предложен способ выделения очищенного концентрата фибриногена, свободного от вирусов и балластных белков. Осуществляют солюбилизацию криопреципитата свежезамороженной плазмы человека. Осаждают фибриноген 20-30%...
Тип: Изобретение
Номер охранного документа: 0002556804
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6a0c

Слиток для деформирования

Изобретение относится к металлургии. Слиток для деформирования состоит из прибыли 1 и тела 2, имеющего трехлучевое поперечное сечение. Вершины лучей наклонены от головной части к донной части слитка. Угол наклона каждого соседнего луча однонаправлено, по часовой или против часовой стрелки,...
Тип: Изобретение
Номер охранного документа: 0002558701
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.9820

Способ изготовления модельного образца для определения деформаций

Изобретение относится к области измерительной техники, а именно к способу изготовления модельного образца для определения деформаций, и может быть использовано при исследовании напряженно-деформированного состояния металла в прокатном и кузнечно-прессовом производстве. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002570564
Дата охранного документа: 10.12.2015
10.05.2016
№216.015.3b3f

Способ получения концентрата тромбина

Изобретение относится к фармацевтической промышленности, а именно к способу выделения очищенного концентрата тромбина. Способ получения концентрата тромбин, свободного от вирусов, заключающийся в криофракционировании свежезамороженной плазмы донорской крови человека, выделении протромбинового...
Тип: Изобретение
Номер охранного документа: 0002583931
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.b31b

Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии

Изобретение относится к диагностике, а именно к способу определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии. Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии, включающий определение ацетола (гидрооксиацетона C3H6O2 GAS116-09-6) в выдыхаемом...
Тип: Изобретение
Номер охранного документа: 0002613910
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c017

Способ изготовления модельного образца для определения деформаций

Изобретение относится к прокатному и кузнечно-прессовому производству при исследовании напряженно-деформированного состояния металла в различных процессах пластического формоизменения. На поверхности пластин одинаковых размеров из модельного материала выполняют риски треугольного профиля и...
Тип: Изобретение
Номер охранного документа: 0002616671
Дата охранного документа: 18.04.2017
10.05.2018
№218.016.3eca

Способ получения лиофилизированного препарата активированного протромбинового комплекса, обладающего фактор viii-шунтирующей активностью

Изобретение относится к медицине и касается способа получения лиофилизированного препарата активированного протромбинового комплекса, обладающего фактор VIII-шунтирующей активностью, включающего криофракционирование свежезамороженной плазмы крови человека, выделение из криосупернатанта...
Тип: Изобретение
Номер охранного документа: 0002648517
Дата охранного документа: 26.03.2018
01.03.2019
№219.016.cf29

Лечебный костюм аксиального нагружения с автоматизированной системой управления

Изобретение относится к области медицины и касается лечебного костюма аксиального нагружения с автоматической системой управления. Лечебный костюм содержит комбинезон и натяжное устройство. Натяжное устройство обеспечивает создание осевой нагрузки на опорно-двигательный аппарат при помощи...
Тип: Изобретение
Номер охранного документа: 0002401622
Дата охранного документа: 20.10.2010
20.03.2019
№219.016.e87c

Пробоотборная емкость для взятия пробы выдыхаемого человеком воздуха на молекулярные маркеры

Изобретение относится к устройствам - пробоотборникам воздуха, выдыхаемого человеком, и предназначено для взятия пробы. Пробоотборная емкость для взятия пробы выдыхаемого человеком воздуха на молекулярные маркеры выполнена в виде мешка объемом 5-7 литров из фторопласта марки Ф-26 с алюминиевым...
Тип: Изобретение
Номер охранного документа: 0002408863
Дата охранного документа: 10.01.2011
+ добавить свой РИД