×
27.08.2014
216.012.ed3d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ОКСИДОВ МЕТАЛЛОВ ИЗ МЕТАЛЛООРГАНИЧЕСКИХ ПРЕКУРСОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА. Предложенное изобретение позволяет увеличить производительность и расширить номенклатуру получаемых наноразмерных оксидов на одном и том же оборудовании без изменения режима синтеза. 2 табл., 1 ил.
Основные результаты: Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров путем проведения химической реакции окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, отличающийся тем, что на смесь воздействуют импульсным электронным пучком с энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Изобретение относится к химической и технической физике, металлургии и предназначено для получения наноразмерных порошков оксидов.

Известен способ [Патент RU №2153016, МПК7 C22B 34/00, C01B 33/00, H05B 7/00, опубл. 20.07.2000] получения редких тугоплавких металлов, кремния и их соединений. Способ заключается в восстановлении (или разложении) газообразных соединений металлов и кремния в присутствии реагентов в зоне низкотемпературной термонеравновесной плазмы. В способе используют дополнительное введение в зону реакции горючей смеси (водорода и кислорода) и активировании газообразных реагентов ультрафиолетовым излучением.

Известен способ [Патент RU №2264888, МПК7 B22F 9/28, опубл. 20.07.2005] получения нанодисперсных порошков оксидов. Способ заключается в подаче в реактор галогенида металла и восстановителя в газообразных состояниях. В реактор до обработки смеси газов подают кислород и инициируют цепной химический процесс импульсным энергетическим воздействием с длительностью не более 10-5 секунды.

Известен способ [Патент RU №2230033, МПК7 C01G 23/07, опубл. 10.06.2004] получения диоксида титана. Способ включает генерацию плазмы кислорода (или кислородосодержащего газа) с температурой 1300-3600°C в электродуговом генераторе плазмы. Далее в плазменный поток вводят тетрахлорид титана в жидком состоянии. Проводят окисление тетрахлорида титана при понижении температуры продуктов реакции до 1000-1600°C, охлаждение образовавшихся продуктов реакции и отделение целевого продукта.

Недостатками данных способов является необходимость дополнительного введения в зону реакции горючей смеси (водорода и кислорода); неудобство использования в качестве исходных реагентов галогенидов металлов, реагирующих при нормальных условиях с парами воды, содержащимися в воздухе, с образованием паров хлороводорода.

Известен способ [Hendrik K. Kammler Sotiris E. Pratsinis Scaling-up the Production of Nanosized SiO2-particles in a Double Diffusion Flame Aerosol Reactor // Journal of Nanoparticle Research. - 1999. - vol.1, №4. - pp.467-477] получения наноразмерного диоксида кремния при окислении гексаметилдисилоксана в проточном реакторе. Способ позволяет получать наноразмерный диоксид кремния средним размером частиц от 15 до 170 нм. Производительность установки - 130 г/час. Однако способ является достаточно сложным в аппаратурном оформлении.

Известен способ [Thomas Delclos, Carole Aimé, Emilie Pouget, Aurélie Brizard, Ivan Huc, Marie-Hélène Delville and Reiko Oda. Individualized Silica Nanohelices and Nanotubes: Tuning Inorganic Nanostructures Using Lipidic Self-Assemblies // Nano Lett. - 2008. - N.8. - P.1929-1935] получения наноразмерного диоксида кремния золь-гель методом. Тетраэтоксисилан подвергался гидролизу на поверхности «шаблонного» органического геля. Затем органика удалялась путем отжига при температуре 450°C. В качестве исходных прекурсоров использовали (C2H4-1,2-((CH3)2N+C16H33)2) и тетраэтоксисилан в смеси с бензиламином в качестве катализатора. Недостатками данного способа являются большие энергозатраты, связанные с процессами гидролиза и отжига на отдельных этапах получения конечного продукта в виде наноразмерного порошка диоксида кремния.

Наиболее близким к предлагаемому способу является способ, выбранный нами за прототип [Motoaki Adachi, Shigeki Tsukui, Kikuo Okuyama Nanoparticle Formation Mechanism in CVD Reactor with Ionization of Source Vapor // Journal of Nanoparticle Research. - 2003. - v.5 (1-2). - pp.31-37]. Он заключается в химическом осаждении из газовой фазы металлоорганического прекурсора (тетраэтоксисилана и кислорода) для получения наночастиц диоксида кремния. Для уменьшения агломеративности частиц используют энергетическое воздействие путем обработки в коронном разряде молекул металлоорганического прекурсора в дополнительной камере. Вследствие этого происходит уменьшение Ван-дер-ваальсовых сил при смешивании в основной камере молекул тетраэтоксислана и кислорода, имеющих однополярный заряд. Способ включает подачу тетраэтоксисилана в предварительную камеру, где его молекулы обрабатываются коронным разрядом (при различном потенциале высоковольтного электрода ионизатора от -10 до +6 кВ) при высоком давлении 0,1-0,3 МПа и перемещаются в реактор. Ионы тетраэтоксисилана реагируют с молекулами кислорода, образовывая частицы диоксида кремния. Поскольку частицы, содержащие тетроэтоксисилан, имеют большое количество этоксигрупп, авторы предлагают поддерживать в реакторе температуру 723-873 К. Если температура реактора меньше данного диапазона, то синтезируются частицы крупного размера. Также на размер частиц в данном методе влияет время сбора конечных продуктов (чем меньше время, тем меньше размер частиц). Исходная концентрации тетраэтоксисилана 3,4×10-5 и 8,60×10-6 моль/л, объем реактора 100 и 200 см3.

Недостатком способа прототипа является сложность аппаратурного обеспечения (дополнительная камера для ионизации молекул металлоорганического соединения), высокая энергоемкость процесса из-за необходимости постоянного обогрева реактора до температуры 723-873 К, низкая производительность процесса вследствие использования малой концентрации тетраэтоксисилана и малого объема реактора, зависимость размера получаемых оксидов от времени сбора конечного продукта и потенциала ионизатора.

Задачей предложенного решения является разработка энергосберегающего способа получения наноразмерных оксидов металлов из металлоорганического прекурсора.

Технический результат заключается в увеличении производительности, расширении номенклатуры получаемых наноразмерных оксидов на одном и том же оборудовании без изменения режима синтеза.

Техническая задача достигается тем, что в способе получения наноразмерных оксидов металлов из металлоорганических прекурсоров путем проведения химической реакции окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в отличие от прототипа, на смесь воздействуют импульсным электронным пучком с энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров основан на объемном возбуждении реакционного газа импульсным электронным пучком и организации процесса протекания реакции во всей области возбуждения. Энергетические затраты пучка значительно ниже энергии выделяемой в химических эндотермических реакциях и при формировании частиц оксидов.

Целесообразно в качестве энергетического воздействия использовать импульсный электронный пучок, энергия электронов которого составляет 100÷500 кэВ. Использование импульсного электронного пучка такой энергии позволяет увеличить объем реакционной камеры до 8 л. Использовать пучок электронов энергией меньше 100 кэВ нецелесообразно вследствие того, что вывод электронного пучка в реакционную камеру со смесью газов осуществляется через выводное окно, представляющее собой алюминиевую фольгу (толщиной 140 мкм), поэтому электроны с более низкой энергией будут задерживаться в выводном окне. Использование пучка электронов с энергией более 500 кэВ возможно, тем самым можно увеличить производительность установки, однако такие установки требуют дополнительной защиты от тормозного рентгеновского излучения и обязательной регистрации их в СЭС.

Целесообразно использовать ток пучка 1-10 кА. В случае когда ток пучка меньше 1 кА - меньше количество и первичных электронов, значит, происходит меньшее количество актов ионизации, в результате чего уменьшается количество зародышей реакции процесса синтеза. Использование пучка электронов с током больше указанного диапазона возможно, однако это увеличивает экономические затраты на создание подобной установки.

Целесообразно использовать электронный пучок длительностью 10÷100 нс. Использование пучка длительностью больше 100 нс нецелесообразно, так как в этом случае время жизни активных частиц будет меньше, чем время энергетического воздействия на исходные вещества. Использования пучка электронов длительностью менее 10 нс требует более сложного аппаратурного оформления, что экономически нецелесообразно.

На фигуре приведена схема установки для получения наноразмерных оксидов металлов из металлоорганических прекурсоров.

Установка состоит из реактора 2 с патрубком 1 для подачи металлоорганического соединения, патрубком 3 для подачи кислорода, окном 4 для осуществления импульсного энергетического воздействия, окном 5 для сбора порошка, патрубком 6 для вывода побочных продуктов и 7 источника импульсного энергетического воздействия - импульсного электронного ускорителя.

Способ осуществляют следующим образом, металлоорганическое соединение через патрубок 1 подают в объем реактора 2, где нагревают его до температуры кипения (от 350 до 450 К), либо плавления (от 400 до 500 К) при использовании твердого металлоорганического прекурсора. Через патрубок 3 в объем реактора 2 подают кислород. Через окно 4 на смесь газов в реакторе 2 производят энергетическое воздействие импульсным электронным пучком от источника 7. Продукты реакции в виде наноразмерного порошка собираются на дне реактора 2 и удаляются через окно 5. Побочные продукты реакции в газообразном состоянии (CO2, H2O) удаляются через патрубок 6.

Заявляемый способ позволяет совместить камеру для ионизации металлоорганического прекурсора и реакционную камеру, что позволяет повысить эффективность передаваемой энергии реактивам.

Пример 1. Реактор 2, изготовленный из кварцевого стекла, диаметром 140 мм, объемом 6 л, оснащен манометром, вакуумметром, малоинерционным датчиком давления для регистрации быстропротекающих процессов, запорно-регулирующей арматурой для напуска исходной реагентной смеси и откачки газа. Реактор 2 перед напуском смеси газов откачивали до давления ~7 торр, далее нагревают до температуры кипения (442 К) Si(C2H5O)4. После в реактор 2 вводят тетраэтоксисилан, а затем кислород. Концентрация исходных реагентов: 2,2 ммоль металлоорганического соединения Si(C2H5O)4 и 26,87 моль кислорода. При воздействии импульсного сильноточного электронного пучка с параметрами: энергия электронов 450-500 кэВ, ток пучка 1-10 кА, длительность импульса 60 нс, на смесь металлоорганического соединения Si(C2H5O)4 и кислорода протекают реакции окисления металлоорганического соединения Si(C2H5O)4 инициированные электронным ударом:

Полная конверсия Si(C2H5O)4 происходила за один импульс электронного пучка. После инжекции электронного пучка в смесь в реакторе образовывался наноразмерный порошок.

В таблице 1 приведены Примеры 2 и 3 получения наноразмерных порошков оксидов титана и меди при одинаковых условиях синтеза и при однократном воздействии импульсного электронного пучка на смесь исходных реагентов.

В таблице 2 показано влияние последующих воздействий электронного пучка на синтезированные частицы оксидов металлов при концентрации исходных реагентов, указанной в таблице 1.

Процесс получения порошков оксидов можно осуществлять как в цикличном режиме (напуск газа→облучение→откачка побочных продуктов реакции в газообразном состоянии), так и в непрерывном (проточном режиме).

Полученные наноразмерные частицы из металлоорганического прекурсора имеют средний размер 40-100 нм.

Предложенный способ применим для получения наноразмерных порошков оксидов различных металлов из металлоорганических прекурсоров. Способ позволяет повысить производительность процесса получения оксидов за счет увеличения объема плазмохимического реактора и концентрации исходных реагентов. В предложенном способе нагрев реакционной камеры производится только до температуры кипения металлоорганического прекурсора, что позволяет не только снизить энергозатраты, но и повысить чистоту конечного продукта, за счет исключения технологических загрязнений, вызванных нагревом реактора до температур, требуемых для протекания химических реакций.

Таблица 1
Полученный оксид металла Исходные реагенты (металлоорганический прекурсор + газ) Основные физико-химические свойства металлоорганического прекурсора Концентрация исходных компонентов Средний размер, получаемых оксидов
SiO2 Тетраэтоксисилан Si(C2H5O)4 Si(C2H5O)4=2,2 ммоль 40-80 нм
Кислород Tкип=442 К O2=26,87 моль
TiO2 Тетраэтоксититан Ti(C2H5O)4 Ti(C2H5O)4=2,2 ммоль 50-100 нм
Кислород Tкип=423 К O2=26,87 моль
CuO Салицилальимин меди C14H12O2N2Cu C14H12O2N2Cu=2,2 ммоль 60-80 нм
Кислород Tплавления=490 К O2=26,87 моль

Таблица 2
Полученный оксид металла Концентрация исходных компонентов 1 импульс 5 импульсов 10 импульсов
Средний размер получаемых оксидов
SiO2 Si(C2H5O)4=2,2 ммоль 40-80 нм 60-100 нм 120-180 нм
O2=26,87 моль
TiO2 Ti(C2H5O)4=2,2 ммоль 50-100 нм 70-120 нм 150-200 нм
O2=26,87 моль
CuO C14H12O2N2Cu=2,2 ммоль 60-80 нм 80-100 нм 150-180 нм
O2=26,87 моль

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров путем проведения химической реакции окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, отличающийся тем, что на смесь воздействуют импульсным электронным пучком с энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ОКСИДОВ МЕТАЛЛОВ ИЗ МЕТАЛЛООРГАНИЧЕСКИХ ПРЕКУРСОРОВ
Источник поступления информации: Роспатент

Showing 11-20 of 144 items.
27.09.2013
№216.012.6e63

Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный...
Тип: Изобретение
Номер охранного документа: 0002493910
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7439

Устройство для разбраковки металлических изделий

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделия, подвергнутого термической или химикотермической обработке, а также для выявления степени пластической деформации....
Тип: Изобретение
Номер охранного документа: 0002495410
Дата охранного документа: 10.10.2013
10.12.2013
№216.012.8977

Электроимпульсный буровой снаряд

Изобретение относится к области проходки скважин и стволов высоковольтными разрядами в крепких горных породах и может найти применение в горнодобывающей промышленности, а также в строительной отрасли. В снаряде последовательно соединены гидротоковвод (1), колонна бурильных труб (2) и буровой...
Тип: Изобретение
Номер охранного документа: 0002500873
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8987

Способ электроразрядного разрушения твердых материалов

Изобретение относится к горнодобывающей и строительной отраслям промышленности. Способ электроразрядного разрушения твердых материалов включает формирование шпура в твердом материале, размещение в нем картриджа с веществом, предающим ударную волну, и взрываемым проводником, и инициирование...
Тип: Изобретение
Номер охранного документа: 0002500889
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a77

Резонансный свч-компрессор

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода...
Тип: Изобретение
Номер охранного документа: 0002501129
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.8fff

Способ приготовления модельного коллоидного раствора

Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002502556
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.97ed

Способ получения вольфрамата натрия

Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л. Процесс выщелачивания ведут не менее 6 часов при температуре 200-225°С с постоянным перемешиванием. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002504592
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
Showing 11-20 of 238 items.
10.04.2013
№216.012.3459

Способ определения висмута в водных растворах методом инверсионной вольтамперометрии по пикам селективного электроокисления висмута из интерметаллического соединения aubi

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения висмута в водных растворах методом инверсионной вольтамперометрии по пикам селективного электроокисления висмута из...
Тип: Изобретение
Номер охранного документа: 0002478944
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34aa

Устройство для моделирования трехфазного многообмоточного трансформатора

Изобретение относится к моделированию трансформатора. Технический результат заключается в повышении точности моделирования трансформатора и в расширении функциональных возможностей устройств моделирования трансформатора за счет обеспечения автоматизированного изменения параметров моделируемого...
Тип: Изобретение
Номер охранного документа: 0002479025
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.37cc

Способ определения платины в рудах и рудных концентратах методом инверсионной вольтамперометрии по пикам селективного электроокисления висмута из интерметаллического соединения ptbi

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах концентраций различных ионов металлов. Способ определения платины в рудах и рудных концентратах методом инверсионной вольтамперометрии согласно изобретению заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002479837
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.3fe0

Способ формирования структуры многокомпонентных бронз

Изобретение относится к литейному производству. Литейную форму нагревают до температуры 550-650°С. Затем форму извлекают из печи и на ее поверхность наносят обмазку, содержащую, вес.%: индустриальное масло 70-80, графитовый порошок 10-15, ультрадисперсный порошок оксидов металлов 10-15. После в...
Тип: Изобретение
Номер охранного документа: 0002481922
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.406e

Способ получения пентафторида ниобия и/или тантала

Изобретение относится к области материаловедения и металлургии, а именно к способам получения пентафторидов ниобия или тантала. Способ включает взаимодействие металлических ниобия или тантала с фторирующим агентом, в качестве которого используют фторид меди в соотношении не более 4 моль фторида...
Тип: Изобретение
Номер охранного документа: 0002482064
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4265

Сверхпроводящий выключатель

Изобретение относится к области сверхпроводниковой электротехники и может быть использовано для коммутации тока сверхпроводящих магнитных систем и сверхпроводящих индуктивных накопителей энергии, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002482567
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.42af

Источник тормозного излучения

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Источник тормозного излучения содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, две системы обмоток смещения с...
Тип: Изобретение
Номер охранного документа: 0002482641
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.42b0

Источник тормозного излучения

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий. Источник тормозного излучения содержит магнитопровод, полюсы, обмотки возбуждения, центральные вкладыши, ускорительную камеру, мишень, две системы обмоток смещения с...
Тип: Изобретение
Номер охранного документа: 0002482642
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.44d6

Устройство для одновременно-раздельной эксплуатации многопластовых скважин

Изобретение относится к одновременно-раздельной эксплуатации продуктивных пластов скважины. Устройство для одновременно-раздельной эксплуатации многопластовых скважин содержит спуско-подъемный механизм, управляющий снаряд и клапанные втулки. Клапанные втулки включают неподвижную втулку с...
Тип: Изобретение
Номер охранного документа: 0002483199
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.455d

Способ геохимических поисков залежей нефти и газа

Изобретение относится к области геохимии и может быть использовано для поисков нефти и газа. Сущность: в конце зимнего периода отбирают пробы снега. Причем пробоотбор выполняют на 0,3 м выше поверхности Земли в точках регулярной сети или профилей с шагом 250-2000 м. Определяют в талой воде...
Тип: Изобретение
Номер охранного документа: 0002483334
Дата охранного документа: 27.05.2013
+ добавить свой РИД