×
27.07.2014
216.012.e57f

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ СИЛЬНОКИСЛОГО ГИДРОФУЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к масложировой промышленности. Способ включает его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, для полученной партии гидрофуза определяют его объем, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков. Причем, если значение водородного показателя исходного гидрофуза pH<3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м; K- коэффициент водонасыщения гидрофуза, доли единицы; pH - водородный показатель исходного гидрофуза; pH - изоэлектрическое состояние белков исходного гидрофуза; γ- удельный вес поваренной соли, кг/м. Компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема. Отстаивают в течение 2-18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат. Частично извлекают масло, воду и фосфатидный концентрат. В последующих объемах исходных гидрофузов аналогично определяют необходимые параметры. А процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH<3,7, на масло, воду и фосфатидный концентрат осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции. Причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов. Изобретение позволяет повысить эффективность извлечения фосфатидов из гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.
Основные результаты: Способ переработки сильнокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pH <3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м;K- коэффициент водонасыщения гидрофуза, доли единицы;pH - водородный показатель исходного гидрофуза;pH - изоэлектрическое состояние белков исходного гидрофуза;γ - удельный вес поваренной соли, кг/м.затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на фракции, после чего частично извлекают фракции: масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH <3,7, на фракции осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Изобретение относится к масложировой промышленности и может быть использовано для получения фосфатидного концентрата из гидрофуза в процессе безотходного производства растительных масел.

Природные масла представляют собой сложную многокомпонентную систему, состоящую в основном из триацилглицеринов (триглицеридов) различного состава, строения и степени непредельности, из разнообразных сопутствующих веществ, молекулярно - и коллоидно - растворимых в глицеридах. В настоящее время технология рафинации растительных масел в отечественной и зарубежной практике реализуется путем удаления из масел сопутствующих им веществ.

Существуют различные способы очистки или рафинирования масла:

физические (отстаивание, центрифугирование, фильтрование), химические (гидратация, щелочная рафинация и др.) и физико-химические (отбеливание, дезодорация и др.).

Гидратационный фуз, известный под названием «гидрофуз», образуется на маслозаводах как вторичный побочный продукт в процессе химической гидролизной очистки различных видов растительных масел. Так при производстве подсолнечного масла получается подсолнечный гидрофуз. При этом, в зависимости от технологии рафинации масла получаемый в виде отходов гидрофуз может характеризоваться широким диапазоном изменения водородного показателя pHгф от 3,2 до 6,5 единиц. Технология переработки гидрофуза, заключающаяся в отделении жировой части (фосфатидного концентрата, состоящего из белков и фосфолипидов) от воды, может существенно зависеть от величины параметра pHгф и особенно от его соотношения с величиной изоэлектрической точки белков (pHиз), присутствующих в гидрофузе. В связи с этим, по величине водородного показателя гидрофузы можно разделить на три группы (категории): сильнокислый при pHгф <3,7, кислый при pHгф≥3,7÷≤5,0 и слабокислый при pHгф>5,0.

Известен способ получения концентрата фосфолипидов (патент РФ №2242142), в котором проводят экстракцию фосфолипидов из гидрофуза сжиженными газами ряда углеводородов, их фтор- и хлор- производными при повышенной температуре и пониженном давлении.

Недостатком известного способа является использование углеводородов, а также их фтор- и хлорпроизводных, что оказывает негативное влияние на качественные показатели фосфолипидов, значительно удорожает их производство и создает экологические проблемы последующей утилизации отходов производства.

Известен способ получения пищевого эмульгатора из гидрационного осадка растительных масел (патент РФ №210,3337), в котором обработка гидрофуза проводится этиловым спиртом, а отделение фосфатидного концентрата путем осаждения и сушки.

Недостатком этого способа является использование дефицитного пищевого этилового спирта, его повышенная пожароопасность и необходимость регенерации.

Известен способ переработки отстоя растительного масла (гидрофуза, фуза) (патент РФ №2102445 - прототип), включающий его разделение на масло и осадок с помощью гидромеханизации и гравитации с использованием активатора. Процесс переработки осуществляется следующим образом. Гидрофуз нагревают до температуры не более 60°C выше температуры свертывания не масляной плотной части, вводят в него 15÷50% от массы гидрофуза, нагретого до такой же температуры, активатор в виде 0,4÷2,6%-ного водного раствора солей щелочных и/или щелочноземельных металлов, сахаров, перемешивают компоненты 5-50 мин, разделяют смесь на масло и осадок отстаиванием смеси в течение 3÷25 ч, отводят из верхних слоев масло, подразделяют его по качеству на пищевое и непищевое, пищевое используют по назначению, непищевое перерабатывают на олифу, а в осадок вводят 0,05÷0,5% от массы осадка антиоксидант и 0,05÷2,0% от массы осадка антисептик и используют в качестве кормовой добавки животным.

К недостаткам этого способа можно отнести трудности переработки гидрофузов, получаемых с разных заводов, в которых отличается технология рафинации масел. Каждая партия гидрофуза характеризуется своими свойствами, в том числе значениями pHгф среды, которые меняются в широких диапазонах от 3,2 до 6,5. Поэтому каждую партию гидрофуза предварительно необходимо довести до определенной величины параметра pHгф, соответствующего неустойчивому изоэлектрическому состоянию белка (pHиз=4,0÷4,5). В этих условиях происходит выделение и осаждение последних совместно с фосфолипидами. В зависимости от соотношения параметров pHгф и pHиз технология переработки гидрофуза существенно меняется. В данной заявке рассматривается возможность переработки сильнокислого гидрофуза, когда параметр pHгф<3,7 и для приведения параметра pHгф в соответствие с pHиз в принципе можно применять в качестве активатора католит. Однако в этом случае требуется большое количество католита (в разы превышающее объем гидрофуза), что экономически не рентабельно. В случае применения щелочных реагентов (концентрированной щелочи, соды, извести) происходит защелачивание гидрофуза и его омыление, так как эти реагенты вступают в реакцию со свободными жирными кислотами и образуются различные мыла, препятствующие разделению гидрофуза на его составляющие.

Техническим результатом является упрощение процесса переработки, сокращение продолжительности ведения процесса переработки гидрофуза, уменьшение энергозатрат, а также улучшение экологии производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Технический результат достигается тем, что в способе переработки сильнокислого гидрофуза, включающем его разделение на фракции - масло, воду и фосфатидный концентрат, введение в него активатора, перемешивание смеси, отстаивание, согласно изобретению, предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pHгф<3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле:

где Vгф - объем гидрофуза, м3;

Kвгф- коэффициент водонасыщения гидрофуза, доли единицы;

pHгф - водородный показатель исходного гидрофуза;

pHиз - изоэлектрическое состояние белков исходного гидрофуза;

γ- удельный вес поваренной соли, кг/м3.

затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат, после чего частично извлекают масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pHгф<3,7, осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Новизна заявляемого предложения заключается в том, что найдено комплексное решение по безотходному использованию сильнокислого гидрофуза с более эффективным извлечением из него фосфатидов при низких энергозатратах и без применения щелочных реагентов.

По данным научно-технической и патентной литературы не обнаружена аналогичная заявляемой совокупность признаков, позволяющая получить технический результат, который ранее не достигался известными средствами, что позволяет судить об изобретательском уровне заявляемого предложения.

Предложенное техническое решение соответствует критерию «промышленная применимость», поскольку воспроизводимо и в исполнении доступно и может быть использовано при переработке сильнокислого гидрофуза.

Предлагаемый способ обезвоживания фосфолипидов основан на следующем механизме взаимодействия фосфолипидов с белками. В подсолнечном гидрофузе содержатся в основном гидрофильные, водорастворимые глобулярные белки, имеющие глобулярную структуру, а также частично, либо полностью гидрофобные мембранные белки, находящиеся в мембранах. Гидрофильность и водорастворимость белков связана с наличием в структуре их молекул гидрофильных полярных - заряженных и незаряженных групп в составе аминокислот. Эти группы притягивают диполи воды. Таким образом, вокруг молекулы белка образуется "водная оболочка", которая удерживает белковую молекулу в растворе. Глобулярные белки состоят из одной полипептидной цепи или нескольких, плотно свернутых за счет нековалентных и ковалентных связей в компактную частицу - глобулу. Почти все их полярные группы находятся на поверхности молекулы и гидратированы, гидрофобные группы находятся внутри молекулы. Аминокислоты представляют собой биполярные ионы. Значение рН среды, при котором устанавливается равенство их положительных и отрицательных зарядов, называется изоэлектрической точкой (ИЭТ) (В.Г. Щербаков, В.Г. Лобанов и др. Биохимия, издание третье, Изд-во «ГИОРД», Санкт-Петербург, 2009 г., с.76). В изоэлектрической точке аминокислоты электрически нейтральны, и потому белки в таком состоянии быстро выпадают в осадок.

Проявляя положительный заряд в кислой среде, свободные белки (неструктурированные в фосфолипидных мембранах) за счет электростатического притяжения образуют белковую весьма гидратированную оболочку вокруг отрицательно заряженных фосфатных групп фосфолипидных агрегатов (мицелл), способствуя устойчивости их эмульсий в водной среде. Именно эти белковые вещества, теряя заряд в изоэлектрическом состоянии, утрачивают способность эмульгировать фосфолипиды и выпадают в осадок.

В качестве сырья для получения фосфатидного концентрата используется гидрофуз, являющийся отходом производства подсолнечного масла, широко развитого в Краснодарском крае.

Знания объема гидрофуза и его коэффициента водонасыщения необходимы для количественной оценки активатора в виде поваренной соли NaCl. Разделение сильнокислого гидрофуза с pH<3,7 на отдельные фракции наиболее активно происходит в условиях приближения водородного показателя гидрофуза pHгф к изоэлектрической точке белков гидрофуза pHиз, поэтому количество поваренной соли, добавляемой в гидрофуз, необходимое для разделения гидрофуза на фракции, зависит от разности параметров pHиз и pHгф, которые необходимо предварительно определять в лабораторных условиях, что позволит повысить эффективность извлечения фосфатидов из гидрофуза и уменьшить энергозатраты.

Применение в качестве активатора соли NaCl обусловлено невозможностью использовать в условиях сильнокислого гидрофуза в больших объемах католит или щелочь, так как в последнем случае происходит процесс омыления, что позволит улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Перемешивание смеси гидрофуза с солью NaCl при повышенной температуре 85-90°C способствует созданию равномерной смеси, достижению ионами Na+ и Cl- агрегатов белков с фосфолипидами, проявлению ими электрического взаимодействия и нейтрализации белков. Это ускоряет процесс разделения гидрофуза на отдельные фракции.

При длительном нахождении смеси в емкости большого объема и наличии в ней кислот и поваренной соли постепенно формируется буферная смесь с параметром pH, близким к изоэлектрическому состоянию белков гидрофуза, поэтому разделение гидрофуза новых партий, смешанных с остатками прежней смеси, происходит существенно быстрее, что сокращает продолжительность ведения процесса переработки гидрофуза.

Последующий перелив смеси гидрофуза с солью NaCl в широкую емкость большого объема способствует ускорению процесса разделения на отдельные фракции за счет дополнительного контакта смеси на большой поверхности с кислородом воздуха и постепенно создания естественной буферной среды с параметром pHгф, приближающимся к pHиз.

В первой порции смеси гидрофуза с солью NaCl расслоение происходит наиболее длительно (2-18 часов), а в последующих порциях, смешивающихся с остатками предыдущих порций, процесс расслоения происходит более быстро, так как они попадают в среду с уже сформировавшейся буферной смесью. Поэтому для создания благоприятных условий расслоения последующих порций после частичного отбора масла, воды и фосфатидного концентрата, необходимо оставлять в емкости не менее 50% предыдущей смеси.

Формула для расчета веса используемой соли NaCl получена эмпирически с учетом принятого значения удельного веса соли NaCl 2,15-103 кг/м3, который изменяется в пределах(2,1-2,2)-103 кг/м3 (Словарь нефти и газа. Издание второе, исправленное и дополненное. Под редакцией чл.-кор. АНСССР М.Ф. Мирчинка, Гостоптехиздат, Ленинград, 1958 г., с.256) или составляет 2,168-103 кг/м3 (Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика. Под редакцией д.г. - м.н. Н.Б. Дортман, М., «Недра», 1976 г., с.61).

Способ переработки гидрофуза осуществляется следующим образом. Для полученной партии гидрофуза предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков (pHиз), при значении водородного показателя исходного гидрофуза pHгф<3,7 в гидрофуз вводят активатор в виде кристаллической поваренной соли NaCl, вес которой определяют по формуле:

где Vгф - объем гидрофуза, м3;

Kвгф- коэффициент водонасыщения гидрофуза, доли единицы;

pHгф - водородный показатель исходного гидрофуза;

pHиз - изоэлектрическое состояние белков исходного гидрофуза;

γ- удельный вес поваренной соли, кг/м3.

Смесь в реакторе перемешивают, нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на масло, воду и фосфатидный концентрат, после чего частично извлекают масло, воду и фосфатидный концентрат, затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного значения pHгф<3,7, осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.

Эффективность способа подтверждается данными, описанными в нижеследующих примерах:

1. Исходная партия гидрофуза, объемом 10,3 м3 и коэффициентом водонасыщения Квгф=0,69, характеризовалась параметром pHгф3,6, значением изоэлектрического состояния его белков pHиз4,1. Для достижения желаемого эффекта в соответствии с расчетами по формуле (1) добавили 458 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 85°C продукт переместили в отстойную емкость большого объема (56 м3), в которой после отстоя в течение 12 часов началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. Во вторую партию гидрофуза объемом 9,4 м3 и коэффициентом водонасыщения Квгф=0,71, параметром pHгф 3,4, значением изоэлектрического состояния его белков pHиз4,1 в соответствии с расчетами по формуле (1) добавили 603 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 90°C продукт переместили в ту же отстойную емкость, перемешали, и через 5 часов отстоя началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. В третью партию гидрофуза объемом 9,8 м3 и коэффициентом водонасыщения Квгф=0,68, параметром pHгф 3,5, значением изоэлектрического состояния его белков pHиз4,2 в соответствии с расчетами по формуле (1) добавили 607 кг поваренной соли NaCl. После нагрева смеси гидрофуза с солью до 85°C продукт переместили в ту же отстойную емкость, перемешали, и через 4 часа отстоя началось разделение гидрофуза, отобрали частично масло, фосфатидный концентрат и воду. Разделение на фракции в одной и той же емкости осуществляется многократно.

Применение данного способа позволяет повысить эффективность извлечения фосфатидов из гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - кислот и щелочей.

Способ переработки сильнокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков, причем, если значение водородного показателя исходного гидрофуза pH <3,7, то в гидрофуз вводят активатор в виде кристаллической поваренной соли, вес которой определяют по формуле: где V - объем гидрофуза, м;K- коэффициент водонасыщения гидрофуза, доли единицы;pH - водородный показатель исходного гидрофуза;pH - изоэлектрическое состояние белков исходного гидрофуза;γ - удельный вес поваренной соли, кг/м.затем компоненты смеси в реакторе перемешивают, после этого нагревают до температуры 85-90°C и переливают в широкую емкость большого объема, отстаивают в течение 2÷18 часов для естественного протекания реакции разделения на фракции, после чего частично извлекают фракции: масло, воду и фосфатидный концентрат; затем в последующих объемах исходных гидрофузов аналогично определяют необходимые параметры, а процесс разделения последующих объемов гидрофуза, со значением водородного показателя исходного гидрофуза pH <3,7, на фракции осуществляют многократно в одной и той же емкости с не менее 50% остатком смеси предыдущего отделения фракции, причем для всех последующих разделений время отстаивания смеси составляет 2÷6 часов.
Источник поступления информации: Роспатент

Showing 341-350 of 541 items.
13.01.2017
№217.015.913e

Способ стимулирования ростовых процессов микроводоросли хлореллы

Изобретение относится к биотехнологии и может быть использовано для повышения продуктивности культивирования микроводорослей хлореллы. Способ предусматривает обработку микроводоросли Chlorella vulgaris ИФР № С-111 озоновоздушной смесью с концентрацией озона не более 7,2 мг/м в течение 6...
Тип: Изобретение
Номер охранного документа: 0002605636
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.917e

Способ профилактики и лечения респираторных заболеваний у телят

Изобретение относится к области ветеринарии и предназначено для профилактики и лечения респираторных заболеваниях у телят. Способ включает использование водно-спиртовой настойки, содержащей траву эхинацеи пурпурной, корневище девясила, приготовленной на основе 70 об.% этилового спирта....
Тип: Изобретение
Номер охранного документа: 0002605620
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.921b

Станок вибрационный

Изобретение относится к машиностроению и может быть использовано для шлифования, полирования и упрочнения поверхностного слоя деталей. Вибрационный станок содержит контейнер, закрепленный на платформе с вибратором, установленной упруго на основании. В контейнере смонтирована и жестко...
Тип: Изобретение
Номер охранного документа: 0002605735
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9226

Способ получения пшеничного солода

Изобретение относится к способу получения солода из зерна пшеницы. Способ включает промывку зерна водопроводной водой в течение 4-8 минут, замачивание промытого зерна анолитом с рН 3,0-6,0 и окислительно-восстановительным потенциалом 970-1110 мВ, концентрацией кислорода 8,3-12,0 мг/л и хлора...
Тип: Изобретение
Номер охранного документа: 0002605632
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.98d2

Способ приготовления мясного полуфабриката кнели из мяса индейки

Изобретение относится к пищевой промышленности, в частности к производству мясных полуфабрикатов из мяса птицы, выращенных в условиях малого крестьянского хозяйства. Способ приготовления мясного полуфабриката кнели из мяса индейки включает подготовку и измельчение филе птицы, приготовление...
Тип: Изобретение
Номер охранного документа: 0002609279
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.99b3

Способ повышения иммунобиологической реактивности и воспроизводительной функции у телок в период наступления физиологического созревания

Изобретение относится к области ветеринарии и предназначено для профилактики иммунодефицита, повышения иммунобиологической реактивности и воспроизводительной функции у телок в период наступления физиологической зрелости. Способ включает использование иммуностимулирующего препарата в виде смеси...
Тип: Изобретение
Номер охранного документа: 0002609869
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.9bd9

Способ производства безалкогольного напитка "солнце крыма"

Изобретение относится к области производства безалкогольных напитков, содержащих фруктовые и овощные соки. Проводят подготовку, измельчение, бланширование и протирку тыквы, полученное тыквенное пюре гомогенизируют. Приготовление купажного сиропа осуществляют следующим образом: в приготовленный...
Тип: Изобретение
Номер охранного документа: 0002609977
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9c0a

Способ производства безалкогольного напитка "гурзуфский вечер"

Изобретение относится к области производства безалкогольных напитков, содержащих фруктовые и овощные соки. Проводят подготовку, измельчение, бланширование и протирку тыквы, полученное тыквенное пюре гомогенизируют. Морковь очищают, бланшируют, протирают с получением пюре и гомогенизируют....
Тип: Изобретение
Номер охранного документа: 0002609974
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9c2b

Способ производства безалкогольного напитка "золото крыма"

Изобретение относится к области производства безалкогольных напитков, содержащих фруктовые и овощные соки. Способ предусматривает подготовку, измельчение, бланширование и протирку моркови с получением морковного пюре и гомогенизацию. Получают брусничное пюре, предварительно очищая, бланшируя,...
Тип: Изобретение
Номер охранного документа: 0002609979
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9c5c

Устройство для приготовления растворов

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. Для расширения технологических возможностей, повышения производительности и качества продукции в устройстве для приготовления растворов, содержащем корпус, закрепленный на платформе, установленной упруго на...
Тип: Изобретение
Номер охранного документа: 0002610487
Дата охранного документа: 13.02.2017
Showing 341-350 of 700 items.
27.07.2015
№216.013.67d8

Способ получения комплексных растворов ацетиленидов меди

Изобретение относится к металлоорганической химии, а именно к способу получения комплексных растворов ацетиленидов меди общей формулы R-C≡C-Cu·3MX, где R = алкил, арил; M = Mg, Ca; X = Cl, Br, J. Комплексный раствор указанных ацетиленидов меди готовят кипячением в течение 1,5-2 часов в токе...
Тип: Изобретение
Номер охранного документа: 0002558137
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.697e

Вертикальный цилиндрический резервуар для хранения жидкостей и газов

Изобретение относится к строительству и, в частности, к возведению вертикальных цилиндрических резервуаров на кольцевых фундаментах. Технический результат изобретения заключается в обеспечении равномерности осадок днища резервуара в период эксплуатации. В вертикальном цилиндрическом...
Тип: Изобретение
Номер охранного документа: 0002558559
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6993

Устройство для приготовления краски

Изобретение относится к устройствам для приготовления продукции во встряхивающих, качающихся и вибрирующих устройствах и может быть применено в лакокрасочной промышленности. Устройство для приготовления краски содержит снабженный амортизаторами установленный с возможностью пространственного...
Тип: Изобретение
Номер охранного документа: 0002558580
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa1

Устройство для измерения характеристик образцов бетона, приготовленного на основе расширяющегося цемента

Изобретение относится к лабораторному анализу характеристик строительных материалов, а именно к определению энергии напряжения и линейного расширения бетона, приготовленного на основе расширяющегося цемента. Заявленное устройство включает в себя измерительный прибор с подвижным элементом на...
Тип: Изобретение
Номер охранного документа: 0002558852
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b56

Вентильный асинхронный генератор для автономной электростанции

Изобретение относится к электротехнике и может быть использовано в вентильных асинхронных генераторах для автономных электростанций. Технический результат состоит в расширении области применения. Вентильный асинхронный генератор содержит двухполюсную обмотку статора и конденсаторы возбуждения,...
Тип: Изобретение
Номер охранного документа: 0002559036
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c2b

Демонстрационное средство обучения и усвоения учебного материала по цитологии

Изобретение относится к области образования, а именно к обучению дисциплины цитология по теме: процесс двойного оплодотворения у высших растений, которое может быть использовано в вузах и школах. Демонстрационное средство содержит объемную наглядную модель, представляющую многослойную трубку из...
Тип: Изобретение
Номер охранного документа: 0002559249
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c4c

Грохот барабанный непрерывного действия

Изобретение относится к технике для классификации сыпучих материалов - грохотам и может быть использовано в строительной, горнодобывающей, металлургической и других отраслях промышленности. Технический результат - расширение технологических возможностей устройства. Грохот барабанный...
Тип: Изобретение
Номер охранного документа: 0002559282
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dda

Стабилизатор расхода воды

Изобретение относится к гидротехнике и может быть использовано для регулирования расхода воды на трубчатых и диафрагмовых водовыпусках. Для исключения нерегулируемых протечек в стабилизаторе расхода воды, содержащем водовыпускную трубу 2 прямоугольного сечения с седлом 4, перекрываемым запорным...
Тип: Изобретение
Номер охранного документа: 0002559680
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.74bf

Устройство для контроля состояния массы улья

Изобретение относится к пчеловодству. Устройство для контроля состояния массы улья содержит контроллер пасеки, состоящий из ЭВМ пчеловода (персонального компьютера), принимающего блока, анализирующего блока, распределительного блока, графического блока для демонстрации полученных данных и...
Тип: Изобретение
Номер охранного документа: 0002561462
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7529

Качающаяся обжиговая печь для обжига строительных материалов

Изобретение относится к качающимся печам для обжига строительных материалов. Печь содержит установленный горизонтально на роликоопорах конический футерованный барабан с секторным вырезом и с углом раскрытия 150-160° в высокотемпературной зоне, коллектор для подачи охлаждающего воздуха,...
Тип: Изобретение
Номер охранного документа: 0002561568
Дата охранного документа: 27.08.2015
+ добавить свой РИД