×
20.07.2014
216.012.df2e

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИЗЕР ДЛЯ ТОНКОСЛОЙНОГО ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕТАЛЛИЧЕСКОГО СВИНЦА

Вид РИД

Изобретение

Аннотация: Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму, выполненную в виде емкости для жидкого металла, как один из электродов, другой электрод вертикально размещен вокруг диафрагмы. Емкость диафрагмы выполнена для жидкого катодного свинца, а пространство между корпусом электролизера и диафрагмой является емкостью для заполнения жидким анодным металлом, при этом диафрагма выполнена плазменным напылением порошка корундовой керамики с объемной пористостью, проницаемой для расплавленного солевого электролита, но непроницаемой для катодного свинца. 1 ил.
Основные результаты: Электролизер для тонкослойного электролитического рафинирования металлического свинца, содержащий корпус с солевым электролитом, жидкометаллические анод и катод и вертикально помещенную в корпус электролизера пористую керамическую диафрагму, выполненную в виде емкости, отличающийся тем, что катод выполнен в виде катодного свинца, размещенного в емкости диафрагмы, анод из чернового свинца размещен в пространстве между корпусом электролизера и упомянутой диафрагмой, при этом диафрагма выполнена плазменным напылением порошка корундовой керамики с объемной пористостью, проницаемой для расплавленного солевого электролита, но непроницаемой для катодного свинца.

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца, и может быть использовано для создания конструкции электролизера с вертикально расположенными жидкометаллическими электродами.

Известна конструкция электролизера для рафинирования легкоплавких металлов (Патент RU 2090660, опубл. 20.09.1997) [1]. Электролизер включает жидкие металлические электроды, размещенные по вертикали на пористых диэлектриках, при этом катод, биполяр и анод расположены по отношению друг к другу последовательно сверху вниз таким образом, что днище катодной камеры находится в контакте с поверхностью металла биполяра, а днище емкости биполяра - в контакте с поверхностью металла анода. Ведение процесса с применением пористых диэлектриков, пропитанных расплавом, приводит к большому сопротивлению ванны. Кроме того, электролит, находящийся в порах диэлектрика, затрудняет возможность контроля состава электролита, пропитывающего диэлектрик, и получение катодного металла высокой степени чистоты. Возможное нарушение диэлектрического слоя пористых диэлектриков способно привести к короткому замыканию между электродами, необходимости прекращения электролиза, замены биполярного электрода, пористых диафрагм, пропитанных электролитом, и полного удаления загрязненного катодного металла.

Известен электролизер для очистки кадмия от меди, свинца и цинка тонкослойным электролизом тонких слоев хлоридного расплава (Рафинирование кадмия методом электролиза тонких слоев хлоридного расплава / Зарубицкий О.Г., Будник В.Г. // Журнал прикладной химии. - 1994. - Т.67. - №6. - С.918-920) [2]. Рафинирование кадмия осуществляют в тонком слое (около 0,1 мм) электролита, находящегося в порах кварцевой ткани. Электролизер с анодным сплавом, помещенный в алундовый тигель, содержит емкость для катодного металла в виде алундового цилиндра, дном которого служит кварцевая ткань, закрепленная на его внешней стенке при помощи кварцевой нити. Токоподводы выполнены из молибдена и зачехлены алундовыми трубками. В качестве электролита применена низкоплавкая смесь хлоридов цинка, калия и натрия. В результате на катоде получают сортовой кадмий по содержанию свинца и меди. Для очистки продукта от цинка необходимо обработка расплавом щелочи либо последующее анодное рафинирование, что увеличит энергозатраты на один кг готового продукта. Используемая в качестве диафрагмы кварцевая ткань характеризуется низкой механической прочностью. С длительным применением в ней могут появиться микротрещины, через которые возможно перетекание расплавленного металла из катода в анод, что приведет к остановке процесса. Этот факт ограничивает возможность применения известного электролизера в опытно-промышленном масштабе.

Наиболее близким к заявляемому изобретению является конструкция электролизера для тонкослойного электролитического рафинирования металлов в расплавах при вертикальном расположении катода и жидкого свинцового анода с использованием пористой диафрагмы (Электролитическая переработка свинца в расплавах/ Павленко И.Г., Гринюк А.П. // Украинский химический журнал. - 1963. - Т.29. - №8. - С.868-873) [3].

Известный электролизер содержит корпус в виде фарфорового стакана, вертикально помещенную в корпус пористую керамическую диафрагму, выполненную в виде емкости под жидкий анодный металл. В корпусе электролизера вокруг диафрагмы вертикально размещен катод из графита или молибдена. Внешнее по отношению к диафрагме пространство корпуса заполнено электролитом. В процессе электролиза на дне стакана собирается катодный свинец, свободная горизонтальная поверхность которого является дополнительным катодом. Для того чтобы не допустить контакта анодного металла с образующимся катодным свинцом, накопление которого происходит на дне фарфорового стакана, и исключить короткое замыкание, диафрагму подвешивают на специальный фланец таким образом, чтобы ее рабочая поверхность была полностью погружена в расплавленный электролит.

Экспериментальная электролитическая переработка висмутового свинца, проведенная в электролизере этой конструкции с пористыми диафрагмами из известных керамических материалов с заранее изученными свойствами, показала следующее. Диафрагмы, изготовленные из обычного шамота с объемной пористостью 27-30%, обладают недостаточной химико-термической стойкостью в расплавленном хлоридно-свинцовом электролите и имеют при этом значительное электрическое сопротивление. Диафрагмы из известных керамических материалов, имеющие объемную пористость до 68,5%, оказались непригодны из-за повышенного фильтрования расплавленного свинца. Диафрагмы, полученные механической обработкой блоков глиноземистого легковеса с объемной пористостью 60% и плотностью 1,3 г/см3, удовлетворяет условиям длительного электролиза в расплавленных хлоридах даже при 600-650°C, однако они не обладают достаточной механической прочностью и имеют значительное электрическое сопротивление. В условиях электролиза в расплавленном хлоридном электролите через некоторое время в таких диафрагмах появляются сквозные трещины, через которые вытекает анодный свинец, загрязняя при этом очищенный металл. Расход электроэнергии составляет 0,7-0,76 кВт·ч на 1 кг свинца.

Таким образом, для обеспечения надежности работы электролизера известной конструкции в производственных условиях требуются пористые диафрагмы из более прочного материала.

Задача настоящего изобретения заключается в повышении надежности работы электролизера в расплавленном хлоридном электролите, повышении степени чистоты получаемого металлического свинца и снижении энергозатрат на процесс электролитического рафинирования свинца.

Для решения поставленной задачи электролизер для тонкослойного электролитического рафинирования металлического свинца содержит помещенную в корпус электролизера пористую керамическую диафрагму, выполненную в виде емкости под жидкий металл, как один из электродов, другой электрод вертикально размещен вокруг диафрагмы. Электролизер отличается тем, что емкость диафрагмы выполнена под жидкий катодный свинец, а пространство между корпусом электролизера и диафрагмой является емкостью для жидкого анодного металла, при этом диафрагма выполнена плазменным напылением порошка корундовой керамики с объемной пористостью, проницаемой для расплавленного солевого электролита, но непроницаемой для катодного свинца.

Вертикальное расположение жидкометаллических электродов относительно диафрагмы таким образом, что внутри диафрагмы находится катодный металл, а снаружи - анодный, означает, что катодный анодный и металлы последовательно разделены по горизонтали, и площади рабочих поверхностей анода и катода равны. Это позволяет устранить неравномерность массообмена в процессе рафинирования. Компактное расположение электродов в заявленной конструкции электролизера снижает расход электроэнергии на поддержание теплового режима и позволяет установить более высокую плотность тока и скорость процесса рафинирования.

Диафрагма, изготовленная плазменным напылением порошка корундовой керамики, имеет механическую прочность, исключающую появление трещин, способствующих вытеканию катодного свинца. Изготовление диафрагмы плазменным напылением порошка корундовой керамики позволяет помимо механической прочности, достаточной для предотвращения вытекания катодного свинца, получить заданную, не превышающую 30% объемную пористость, проницаемую для расплавленного солевого электролита, но непроницаемую для выделившегося катодного свинца. При увеличении пористости свыше 30% необходима более толстая стенка получаемой таким способом диафрагмы, которая увеличит межэлектродное расстояние, а следовательно, напряжение и общие энергозатраты. Использование диафрагмы из керамики с заданной объемной пористостью позволяет определять плотность тока электролиза при заданной величине тока и, соответственно, контролировать качество очистки металлов. Заявляемая конструкция характеризуется малыми междуэлектродными расстояниями, что позволяет снизить удельный расход электроэнергии из-за уменьшения напряжения между электродами.

Новый технический результат, достигаемый заявленным решением, заключается в повышении механической прочности диафрагмы при объемной плотности, устраняющей возможность загрязнения катодного металла и неравномерности массообмена.

Предлагаемая конструкция электролизера изображена на чертеже. Электролизер содержит жидкометаллический анод (1) и жидкометаллический катод (2), разделенные диафрагмой (3) с порами для электролита (4). Диафрагма выполнена из напыленной плазменным методом корундовой керамики с объемной пористостью 30%, проницаемой для расплавленного солевого электролита KCl-PbCl2. Полученная этим методом диафрагма имеет предел прочности при изгибе от 35 до 60 МПа, что оказалось достаточным для предотвращения образования в ней трещин. Диафрагма (3) выполнена в форме емкости со сферическим плотным дном и толщиной стенки 10-15 мм, стенки диафрагмы являются емкостью для электролита (4), а ее внутреннее пространство - сборником катодного свинца. Внешнее по отношению к диафрагме анодное пространство (1) предназначено для исходного сырьевого сплава.

Корпус электролизера представляет собой тигель, выполненный из силицированного графита (5). В частном случае электролизер может включать стальную крышку, предназначенную для крепления деталей: токоподводов, измерителей уровня жидких металлов, термопар. Токоподводы (6) к жидкометаллическим электродам (1) и (2) выполнены из стали марки СТ-3 в виде стержней, защищенных алундовыми трубками, нижняя часть которых погружена в расплавленный металл, а верхняя - соединена с источником постоянного тока. Для создания инертной атмосферы и предотвращения окисления металлов на поверхности жидкометаллических электродов размещены графитовые шайбы (7) с отверстиями для токоподводов и алундовых трубок (8), предназначенных для загрузки анодного и выгрузки катодного металла.

Подготовка электролизера к работе и его эксплуатация осуществляется следующим образом. В тигель устанавливают диафрагму (3), в анодное пространство (1) загружают черновой свинец, в емкость (2) - свинец марки С1. Погружают тоководводы (6) и включают постоянный ток, далее расплавляют анодный и катодный металл до рабочего уровня. Под воздействием электрического тока на аноде (1) происходит растворение свинца до катионов Pb2+, которые через солевой расплав (4), находящийся в порах диафрагмы (3), переходят в катод (2) и восстанавливаются до металлического свинца.

Опытные испытания электролизера с нагрузкой от 100 до 350 А проведены в течение 7 суток в расплаве из хлоридов калия и свинца. В одну технологическую стадию проведена очистка чернового свинца от следующих металлов-примесей: Sb, Sn, Bi, As, Zn, по ГОСТ 3778-98. Содержание металлов-примесей в анодном сплаве составляет, мас.%: для сурьмы - 1,0÷2,0; висмута - 2,0÷3,0; мышьяка - 0,5÷0,7; серебра - 0,01÷0,02; цинка - 0,0005÷0,0007; олова - 0,02÷0,04; железа - ≤0,0003.

В результате испытаний показана стабильная работа электролизера в непрерывном режиме рафинирования при отсутствии трещин в диафрагме, через которые мог бы вытечь катодный металл. Использование заявляемой конструкции для рафинирования чернового свинца позволяет в одну операцию стабильно получать металл, по контролируемым примесям соответствующий марке С1 по ГОСТ 3778-98 (содержание свинца не менее 99,985 мас.%). Энергозатраты при плотности тока 0,3 А/см2 составили 0,5 кВт·ч/кг, что на 30% меньше, чем в прототипе.

Таким образом, заявляемая конструкция электролизера позволяет повысить надежность работы электролизера в расплавленном хлоридном электролите, при повышении степени чистоты получаемого металлического свинца и снижении энергозатрат на процесс электролитического рафинирования свинца.

Электролизер для тонкослойного электролитического рафинирования металлического свинца, содержащий корпус с солевым электролитом, жидкометаллические анод и катод и вертикально помещенную в корпус электролизера пористую керамическую диафрагму, выполненную в виде емкости, отличающийся тем, что катод выполнен в виде катодного свинца, размещенного в емкости диафрагмы, анод из чернового свинца размещен в пространстве между корпусом электролизера и упомянутой диафрагмой, при этом диафрагма выполнена плазменным напылением порошка корундовой керамики с объемной пористостью, проницаемой для расплавленного солевого электролита, но непроницаемой для катодного свинца.
ЭЛЕКТРОЛИЗЕР ДЛЯ ТОНКОСЛОЙНОГО ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕТАЛЛИЧЕСКОГО СВИНЦА
Источник поступления информации: Роспатент

Showing 91-99 of 99 items.
22.11.2019
№219.017.e4d4

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в качестве источника электропитания силовых электрических агрегатов. Батарея содержит корпус, состоящий из двух герметичных оболочек с теплоизоляцией...
Тип: Изобретение
Номер охранного документа: 0002706728
Дата охранного документа: 20.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
18.03.2020
№220.018.0ccc

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки,...
Тип: Изобретение
Номер охранного документа: 0002716726
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава...
Тип: Изобретение
Номер охранного документа: 0002716727
Дата охранного документа: 16.03.2020
19.03.2020
№220.018.0d5c

Ячейка для исследования высокотемпературной проводимости твердых веществ

Ячейка для исследования высокотемпературной проводимости твердых веществ. Технический результат заключается в реализации внешнего воздействия оптического излучения на образец одновременно с воздействием температуры и газовой среды. Ячейка содержит кварцевую трубку, в которую помещен кварцевый...
Тип: Изобретение
Номер охранного документа: 0002716875
Дата охранного документа: 17.03.2020
24.03.2020
№220.018.0f15

Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа

Изобретение относится к способу определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды, включающему использование трехзондовой электрохимической ячейки с индифферентными электродами. Способ характеризуется тем, что за удельную скорость...
Тип: Изобретение
Номер охранного документа: 0002717315
Дата охранного документа: 20.03.2020
05.06.2020
№220.018.2476

Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы

Изобретение относится к электрохимическому способу получения микродисперсных порошков гексаборидов металлов лантаноидной группы. Способ включает синтез гексаборидов лантаноидов из хлоридсодержащего расплава, содержащего ионы бора и ионы лантаноида. В качестве хлоридсодержащего расплава...
Тип: Изобретение
Номер охранного документа: 0002722753
Дата охранного документа: 03.06.2020
14.05.2023
№223.018.552f

Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси

Изобретение относится к аналитической технике и может быть использовано для измерения содержания в газовых смесях предельных углеводородов, таких как метан и этан, а также содержание в них примеси водорода. Амперометрический датчик для измерения концентрации метана и примеси водорода в...
Тип: Изобретение
Номер охранного документа: 0002735628
Дата охранного документа: 05.11.2020
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
Showing 91-97 of 97 items.
15.05.2023
№223.018.590c

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
15.05.2023
№223.018.590d

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
16.05.2023
№223.018.5ee2

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
16.05.2023
№223.018.5ee4

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
23.05.2023
№223.018.6e10

Способ электролитического синтеза гексахлоррената цезия

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе...
Тип: Изобретение
Номер охранного документа: 0002758363
Дата охранного документа: 28.10.2021
29.05.2023
№223.018.723c

Система охлаждения центрального тела сопла клиновоздушного реактивного двигателя

Изобретение относится к ракетно-космической технике, а именно к устройству двигательных установок. Система охлаждения центрального тела сопла клиновоздушного реактивного двигателя включает в себя коллектор внутри центрального тела, организованный по замкнутой схеме, при этом коллектор...
Тип: Изобретение
Номер охранного документа: 0002796360
Дата охранного документа: 22.05.2023
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
+ добавить свой РИД