×
24.03.2020
220.018.0f15

Результат интеллектуальной деятельности: Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды, включающему использование трехзондовой электрохимической ячейки с индифферентными электродами. Способ характеризуется тем, что за удельную скорость процессов на поверхности материала в реакции фотостимулированного электролиза воды принимают плотность тока обмена, для определения которой получают спектры импеданса электрохимической ячейки без исследуемого материала, этой же ячейки с навесками исследуемого материала различной массы в темноте, а также при облучении модельным ультрафиолетовым излучением, при обработке полученных спектров импеданса ячейки выделяют величину поляризационного сопротивления, по зависимости обратной величины поляризационного сопротивления от массы навески определяют скорость процесса на поверхности одного грамма материала, определяют удельную поверхность одного грамма материала, рассчитывают проводимость фарадеевскую процесса на единицу поверхности и далее рассчитывают плотность тока обмена. Также изобретение относится к устройству. Способ применим для определения удельной скорости процессов на поверхности материала. 2 н.п. ф-лы, 5 ил.

Изобретение относится к так называемой «водородной энергетике» и может быть использовано в технологиях получения солнечной энергии с помощью фотогальванических элементов.

Прямое использование солнечной энергии для получения электроэнергии привлекательно из-за отсутствия необходимости тратить ископаемое топливо. Однако классические фотоэлектрические элементы требуют использования аккумуляторов для накопления энергии. Это создает большие проблемы, так как они дороги, характеризуются конечным саморазрядом, имеют проблемы с аддитивностью; например, из пяти аккумуляторов с 20% заряда получить один полностью заряженный и четыре пустых – это не тривиальная задача. Именно поэтому, в качестве накопителя энергии актуально использовать вещество, а не устройство. Одним из наиболее обоснованных выборов такого вещества-энергоносителя является водород, что и породило термин «водородная энергетика».

По мере повышения доступности протон-проводящих (полимерных) мембран с высокой проводимостью стали актуальны фотогальванические элементы, позволяющие реализовать фотостимулированный электролиз воды. Основой такого элемента является протон-проводящая мембрана, разделяющая два раствора, отличающихся по рН: сильная кислота и сильное основание. В кислом растворе находится электрод для выделения водорода (обычно нано-углеродный материал с нанесенным катализатором), который хорошо работает и в темноте. В щелочном растворе находится полупроводниковый материал, например, допированный оксид титана. Если этот электрод не освещается, то на ячейке существует напряжение разомкнутой цепи за счет разницы в рН, но оно не достаточно для процесса разложения (электролиза) воды. Освещение этого электрода создает фотовольтодобавку, которая приводит в выделению кислорода в щелочной части ячейки и водорода – в кислотной.

Оптимизация свойств полупроводникового электрода для щелочной среды требует знания целого ряда его характеристик, таких как величина фотовольтодобавки и ее стабильность во времени, стабильность материала в таких жестких условиях, и т.д. Наибольшее затруднение вызывает определение удельных характеристик скорости реакции на поверхности материала. На сегодняшний день эта задача не решена. Удается исследовать электрод именно в актуальной щелочной среде, но в силу использования клея и сажи для его формирования, невозможно что-либо сказать об удельных (на единицу поверхности) свойствах материала для их сравнения.

Известны способы измерения удельной активности поверхности порошкового материала для редокс - процессов некоторых органических молекул [1]. При этом широко используются две модификации, к одной из которых относится окисление водного раствора окрашенного органического компонента, например метиленового голубого (МГ), с контролем оптической плотности раствора спектрофотометром в ходе процесса его обесцвечивания [2], к другой – окисление водного раствора органического компонента, например, с контролем редокс потенциала [3].

Сущность способов измерения удельной активности поверхности порошкового материала для редокс - процессов некоторых органических молекул заключается в том, что измеряют скорость альтернативного процесса окисления органической молекулы и результаты анализируют, исходя из предположения, что скорости измеренного процесса для органической молекулы, и скорости интересующего процесса фотолиза воды пропорциональны.

Для определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды, этот подход неприемлем, т.к. даже если предположение верно, и скорости измеренного процесса для органической молекулы, и скорости интересующего процесса фотолиза воды пропорциональны, то коэффициент пропорциональности не остается инвариантом и зависит от материалов органических ред-окс пар, базового полупроводникового материала, рН.

Задачей изобретения является создание способа определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды.

Для этого предложен способ, включающий использование трехзондовой электрохимической ячейки с индифферентными электродами. В этом способе за удельную скорость процессов на поверхности материала в реакции фотостимулированного электролиза воды принимают плотность тока обмена. Для определения плотности тока обмена получают спектры импеданса электрохимической ячейки без исследуемого материала, этой же ячейки с навесками исследуемого материала различной массы в темноте, а также при облучении модельным ультрафиолетовым излучением, при обработке полученных спектров импеданса ячейки выделяют величину поляризационного сопротивления, по зависимости обратной величины поляризационного сопротивления от массы навески определяют скорость процесса на поверхности одного грамма материала, определяют удельную поверхность одного грамма материала, рассчитывают проводимость фарадеевскую процесса на единицу поверхности и далее рассчитывают плотность тока обмена.

Предлагаемый способ основан на представлении об идеально поляризуемом электроде, созданном в электрохимии. Если электрод индифферентен, то при изменении его поляризации от внешнего источника тока, заряд тратится только на изменение его емкости. Емкость может быть достаточно большой в силу адсорбции компонентов раствора на электроде, но фарадеевского процесса протекания тока на таком электроде не происходит. Величина его сопротивления, если мы введем его в рассмотрение, будет равна бесконечности. Если такой идеально поляризуемый электрод привести в контакт с порошком, который не является индифферентным, то появится вклад фарадеевского процесса, характеризующий активность порошка, который может быть измерен, например, методом импедансной спектроскопии. В предложенном способе используются несколько навесок материала, что позволяет получить вклад фарадеевской проводимости, приведенный на единицу массы порошка. Данные метода БЭТ (Брунауэра -Эммета -Теллера, стандартный метод определения площади поверхности пористого твердого тела) позволяют перейти от величины проводимости, соотнесенной на единицу массы порошка к данным на единицу его поверхности. А предполагая, что процесс одноэлектронный, мы можем даже оценить плотность тока обмена Io, которую принимаем за удельную скорость процессов на поверхности материала в реакции фотостимулированного электролиза воды

Io = RT/F Y

где R и F универсальная газовая постоянная и константа Фарадея,

Т – абсолютная температура

Y – фарадеевская проводимость, или величина обратная поляризационному сопротивлению электрода.

Новый технический результат, достигаемый заявленным способом, заключается в прямом определении удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды непосредственно в условиях протекания процесса.

Заявляемый способ осуществляют с помощью трехзондовой электрохимической ячейки, прототипом которой является стандартная трехзондовая электрохимическая ячейка, содержащая раствор электролита, индифферентные в концентрированной щелочи электрод сравнения, рабочий электрод и противоэлектрод [4].

Предложенная ячейка отличается тем, что содержит электродный блок из изолирующего материала с вертикальным каналом для ввода модельного ультрафиолетового излучения, рабочий электрод содержит постоянную часть в виде потенциального и токового токоподводов, а также сменной части, состоящей из комбинации сеточек для навески исследуемого материала и фольги, выполняющей функцию противоэлектрода, при этом потенциальный и токовый токосъемы рабочего электрода встроены в электродный блок.

Через вертикальный канал, предусмотренный в электродном блоке ячейки, облучают исследуемый материал источником мягкого УФ излучения для последующего измерения импедансного спектра ячейки с этим материалом. Канал для ввода излучения, поперек которого расположен рабочий электрод, позволяет проводить измерения, как в темноте, так и при излучении. При этом рабочим электродом ячейки служит сменная комбинация расположенных горизонтально сеточки и фольги из индифферентного материала. Электродный блок, выполненный из изолирующего материала, объединяет токоподводы рабочего электрода и электрода сравнения в жесткую конструкцию, чем фиксирует расстояние между электродом сравнения и рабочим электродом, и создает воспроизводимость, а также изолирует от раствора электролита части токоподводов, нарушающие модельную геометрию ячейки, что гарантирует отсутствие артефактов. Два токоподвода, потенциальный и токовый, встроенные в электродный блок, позволяют принципиально устранить искажения спектра импеданса, вызванные индуктивностью подводящих линий прибора.

Новый технический результат, достигаемый заявленной ячейкой, заключается в обеспечении снятия качественных спектров импеданса электрохимической ячейки без исследуемого материала, этой же ячейки с различными по массе навесками исследуемого материала в темноте и при облучении модельным ультрафиолетовым излучением.

Изобретение иллюстрируется рисунками, где на фиг.1 представлено фото ячейки в сборе; на фиг. 2 – вид электродного блока сбоку; на фиг. 3 –вид электродного блока снизу; на фиг. 4 – фото электродного блока в разобранном состоянии; на фиг.5 приведена зависимость обратной величины поляризационного сопротивления используемой ячейки от массы навески исследуемого материала Degussa P25.

Заявленный способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды осуществляют следующим образом. Измеряют импедансные спектры пустой (без исследуемого материала) трехзондовой электрохимической ячейки, далее на сеточку помещают навески исследуемого материала различной массы и измеряют импедансный спектр ячейки с исследуемым материалом сначала в темноте, а затем при его облучении источником мягкого УФ излучения через канал, предусмотренный в электродном блоке ячейки.

Обработка спектров импеданса позволяет выделить величину поляризационного сопротивления Rη. Эту величину определяют фитингом низкочастотной части годографа спектра адмиттанса в рамках модели (Rη(RхQ)) в нотации Бернарда Бокампа [5]. Высокочастотную границу области частот, применимых для проведения фитинга годографа спектра адмиттанса определяют из пересечения кривых реальной и мнимой частей импеданса пустой ячейки в зависимости от частоты, а низкочастотная ограничена аппаратными возможностями прибора для измерения импеданса

Величина Rη бесконечно велика в отсутствии материала, и конечна в случае активного порошка. В независимом измерении, например, методом БЭТ, определяется удельная поверхность исследуемого порошка. Совокупность этих данных, в предположении, что все частицы порошка контактируют с сеточкой, позволяет определить удельную проводимость процесса обмена носителями заряда между изучаемым материалом и раствором.

Для осуществления способа предложена трехзондовая электрохимическая ячейка с электродами из индифферентного в концентрированной щелочи материала: электрода сравнения 1, рабочего электрода 2, и противоэлектрода 3. Ячейка содержит изготовленный из тефлона, разборный электродный блок 4, помещаемый в сосуд с раствором электролита 5. Электродный блок имеет вертикальный канал 6 для ввода модельного ультрафиолетового излучения. Выполненный из никеля электрод сравнения 1 расположен внутри электродного блока, который контактирует с раствором электролита только на участке (см. фиг. 4). Внутри электродного блока расположены выполненные также из никеля, токовый 7 и потенциальный 8 токосъемы рабочего электрода 2, являющиеся его постоянной частью. Сменная часть рабочего электрода 9 состоит из комбинации никелевых сеточек и фольги и служит для размещения навески исследуемого материала. Сменную часть 9 помещают в сосуд с раствором электролита 5 таким образом, чтобы она касалась обоих токосъемов 7 и 8 (см. фиг. 3). Это позволяет элиминировать индуктивный вклад проводов от измерителя к ячейке, что очень важно для корректного получения спектров импеданса. Мелкоячеистая никелевая сеточка в сменной части рабочего электрода выполнена из никеля саржевого плетения - ГОСТ НП2 004 Н ГОСТ 6613-86, фирма TDMC, Россия - диаметр проволоки 0.03 мм, средний размер ячейки 0.04 мм. Использование сэндвича «сетка-фольга-сетка» более приемлемо, так как он не допускает потери части исследуемого материала при его проваливании сквозь сетку на дно ячейки. Цена мелкоячеистой никелевой сетки достаточно велика, чтобы подбирать размер ее ячеек для каждого материала. Отметим, что сетка и фольга являются расходуемыми материалами, т.е. для каждого нового исследуемого материала используют новые. Электродный блок помещали в сосуд с раствором так, чтобы сменная часть рабочего электрода была горизонтальной и перпендикулярной оси канала 6. Никелевая фольга из сменной части рабочего электрода, выполняющая функцию противоэлектрода 3, помещена в периферийную часть сосуда с раствором электролита 5, и за счет своей жесткости прижата к его стенке. Потенциальный и токовый токосъемы рабочего электрода встроены в электродный блок с помощью двух горизонтальных шин рабочего электрода, постоянно вшитых в электродный блок, и сменная часть рабочего электрода прижата к ним с усилием. Разборная конструкция электродного блока позволяет легко заменять расходуемые компоненты рабочего электрода.

Пример анализа скорости переноса заряда между исследуемым материалом и раствором электролита приведен для 1М раствора КОН и широко известного промышленного порошка оксида титана марки Degussa P25 [6]. Материал представляет собой смесь двух модификаций – анатаза (75 %) и рутила (25%). Размер кристаллитов порядка 50 нм.

Измерения импеданса проведены на приборе Z-350 (Elins, Россия) в области частот 104 – 0.1 Гц. Использованы три разные навески исследуемого материала. Поляризационное сопротивление, выделенное на фоне спектра никелевой сеточки без материала, представлено на фиг. 5. Видно, что обратная величина сопротивления (проводимость), пропорциональная скорости процесса, линейно зависит от количества материала. Наклон зависимости составляет 110±6 10-5 См на грамм порошка. С учетом значения удельной поверхности порошка, определенной методом БЭТ, и равной 47.87 [м2/гр], удельная проводимость переноса заряда между исследуемым материалом и раствором электролита 2.30 10-5 [См м-2]. Плотность тока обмена составила 58.4 10-8 [А м-2] или 58.4 10-12 [А см-2].

Таким образом, заявленная группа изобретений позволяет определять удельную скорость процессов на поверхности материала в реакции фотостимулированного электролиза воды.

Источники информации:

1. Gerischer H., Heller А. Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water // Journal of The Electrochemical Society. 1992. V.139. №1. Р. 113-118;

2. Морозов А.Н Диссертация к.х.н. г. Москва, 2014;

3. I.V. Baklanova, V.P. Zhukov, V.N. Krasil'nikov, O.I. Gyrdasova, L. Yu. Buldakova, E.V. Shalaeva, E.V. Polyakov, M.V. Kuznetsov, I.R. Shein, E.G. Vovkotrub. Fe and C doped TiO2 with different aggregate architecture: Synthesis, optical, spectral and photocatalytic properties, first-principle calculation // Journal of Physics and Chemistry of Solids 2017. V.111. 473–486;

4. Феттер К. Электрохимическая кинетика. М.: Химия. 1967;

5. Boukamp B. A package for impedance/admittance data analysis // Solid State Ionics. 1986. V.18&19 P. 136-140;

6. Ohno T., Sarukawa K., Tokieda K., Matsumura M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases // Journal of Catalysis. 2001. V.203. №1. P. 82-86.


Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа
Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа
Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа
Источник поступления информации: Роспатент

Showing 1-10 of 193 items.
10.04.2013
№216.012.338a

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом...
Тип: Изобретение
Номер охранного документа: 0002478737
Дата охранного документа: 10.04.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5e1a

Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах

Изобретение относится к аналитической технике, в частности к датчикам, предназначенным для анализа газовых сред и металлических расплавов на кислородосодержание. Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах содержит выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002489711
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.619f

Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды,...
Тип: Изобретение
Номер охранного документа: 0002490623
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.75f2

Твердый электролит на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах. Твердый электролит на основе оксида церия и церата бария, допированный самарием, имеет состав, отвечающий...
Тип: Изобретение
Номер охранного документа: 0002495854
Дата охранного документа: 20.10.2013
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8875

Электрохимический способ получения графена

Изобретение может быть использовано в электрохимических и электрофизических устройствах. Осуществляют анодную гальваностатическую поляризацию титана или циркония с плотностью тока от 0,1 до 3,0 мА·см в расплаве хлоридов щелочных металлов, содержащем от 0,1 до 1,0 мас.% порошка карбида бора при...
Тип: Изобретение
Номер охранного документа: 0002500615
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
Showing 1-10 of 14 items.
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.08.2015
№216.013.6f5c

Единичный блочный твердооксидный топливный элемент и батарея электрохимического генератора на его основе

Изобретение относится к топливным элементам, преобразующим химическую энергии топлива в электрическую энергию. Техническим результатом является повышение мощности и жесткости единичного блочного твердооксидного топливного элемента, увеличение активной поверхности электродов и площади контакта...
Тип: Изобретение
Номер охранного документа: 0002560078
Дата охранного документа: 20.08.2015
27.12.2016
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
26.08.2017
№217.015.e398

Сложный оксид кадмия и железа и способ его получения

Изобретение относится к области спиновой электроники, конкретно к получению нового магнитного материала - сложного оксида кадмия и железа состава CdFeO, где 0,025≤x≤0,07. Способ получения сложного оксида кадмия и железа состава CdFeO, где 0,025≤x≤0,07 включает получение смеси растворов формиата...
Тип: Изобретение
Номер охранного документа: 0002626209
Дата охранного документа: 24.07.2017
10.05.2018
№218.016.4e52

Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Изобретение относится к составам высокотемпературных герметиков. Описан состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана, содержащий оксид кремния в качестве стеклообразователя и корректирующие добавки, в котором в качестве...
Тип: Изобретение
Номер охранного документа: 0002650977
Дата охранного документа: 18.04.2018
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
26.07.2018
№218.016.7576

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств для высокоэффективной генерации тока, генерации водорода электролизом воды, генерации кислорода и азота твердооксидными кислородными насосами, конверсии топливных газов с...
Тип: Изобретение
Номер охранного документа: 0002662227
Дата охранного документа: 25.07.2018
01.11.2018
№218.016.9938

Способ получения керамики для извлечения гелия из газовых смесей

Изобретение относится к способам получения функциональной керамики, которая может использоваться для извлечения гелия из газовых смесей, включая природный газ, и разделения его изотопов. Способ включает прессование и обжиг тонкодисперсных порошков прекурсоров, в качестве которых используют...
Тип: Изобретение
Номер охранного документа: 0002671379
Дата охранного документа: 30.10.2018
18.05.2019
№219.017.56f5

Способ получения кислородопроводящей керамики на основе галлата лантана

Способ получения кислородпроводящей керамики на основе галлата лантана относится к химическому синтезу веществ, в частности к самораспространяющемуся высокотемпературному синтезу с использованием этиленгликоля, и может быть использован при изготовлении твердых электролитов на основе галлата...
Тип: Изобретение
Номер охранного документа: 0002387052
Дата охранного документа: 20.04.2010
+ добавить свой РИД