×
27.06.2014
216.012.d82b

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ОТ АВАРИИ МНОГОКАНАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ РАКЕТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано в автоматах стабилизации ракет, управление угловым движением которых осуществляется путем поворота нескольких камер сгорания двигателей с помощью рулевых приводов. Способ защиты от аварии многоканальных систем управления ракет включает формирование в каждом канале, соответствующем определенной камере сгорания, информативного сигнала в виде разности командного сигнала и сигнала обратной связи, формирование сигнала отключения соответствующего канала системы управления в виде сигнала установки штока рулевого привода этого же канала в среднее положение. Сигнал отключения канала формируют в случае превышения вычисленным на временном промежутке определенной длительности интегралом от модуля информативного сигнала заранее выбранного порогового значения, при этом командные сигналы остальных каналов формируют в виде сумм или разностей управляющих сигналов по тангажу, рысканию и крену и сигнала обратной связи отключенного канала с коэффициентами, зависящими от номера отключенного канала, таким образом, чтобы обеспечить создание требуемых суммарных управляющих моментов по тангажу, рысканию и крену. Техническим результатом является повышение вероятности успешного продолжения полета при отказе рулевого привода одного из каналов системы управления. 4 ил.
Основные результаты: Способ защиты от аварии многоканальных систем управления ракет, включающий формирование в каждом канале, соответствующем определенной камере сгорания, информативного сигнала в виде разности командного сигнала и сигнала обратной связи, формирование сигнала отключения соответствующего канала системы управления в виде сигнала установки штока рулевого привода этого же канала в среднее положение, отличающийся тем, что сигнал отключения канала формируют в случае превышения вычисленным на временном промежутке определенной длительности интегралом от модуля информативного сигнала заранее выбранного порогового значения, при этом командные сигналы остальных каналов формируют в виде сумм или разностей управляющих сигналов по тангажу, рысканию и крену и сигнала обратной связи отключенного канала с коэффициентами, зависящими от номера отключенного канала, таким образом, чтобы обеспечить создание требуемых суммарных управляющих моментов по тангажу, рысканию и крену.

Изобретение относится к ракетно-космической технике и может быть использовано в автоматах стабилизации ракет, управление угловым движением которых осуществляется путем поворота нескольких камер сгорания двигателей с помощью рулевых приводов.

Наиболее близким по технической сущности к предлагаемому изобретению является выбранный в качестве прототипа способ защиты от аварии многоканальных систем управления ракет [1]. Этот способ включает формирование в каждом канале, соответствующем определенной камере сгорания, информативного сигнала в виде разности командного сигнала и сигнала обратной связи, сравнение значения длительности этого информативного сигнала с допустимым значением, большим времени перемещения камеры сгорания с максимальной угловой скоростью, обеспечиваемой рулевым приводом этого канала, из крайнего положения в среднее и меньшим времени выхода ракеты на предельные углы отклонения по тангажу, рысканию и крену, формирование сигнала отключения соответствующего канала системы управления при превышении длительности информативного сигнала допустимого значения в виде сигнала установки штока рулевого привода этого же канала в среднее положение, при этом командные сигналы остальных каналов формируют с амплитудой, превышающей ее номинальное значение.

Одним из недостатков данного способа защиты от аварии многоканальных систем управления ракет является недостаточная надежность в идентификации отказавшего канала системы управления. Это связано с тем, что в соответствии с известным способом при определении факта отказа канала учитывается только длительность информативного сигнала, которая сравнивается с допустимым значением длительности. Это может привести, с одной стороны, к ложному срабатыванию системы управления - отключению исправного канала (в случае, например, наличия достаточно длительного участка нарастания командного сигнала при прохождении слоя атмосферы со сдвигом ветра, когда сигнал обратной связи отстает от командного сигнала на очень небольшой угол, обусловленный динамикой рулевого привода). С другой стороны, при быстром развитии аварийной ситуации, когда командный сигнал и сигнал обратной связи интенсивно нарастают по абсолютной величине, но имеют разные знаки, решение об отключении неисправного канала, принятое на основании только длительности информативного сигнала, может оказаться запоздавшим, при этом ракета потеряет управляемость.

Другим недостатком известного способа защиты от аварии многоканальных систем управления ракет является то, что при применении этого способа не полностью реализуются возможности системы управления по парированию влияния отказавшего канала на динамику движения ракеты. Известный способ предусматривает при обнаружении отказа одного из каналов увеличение амплитуды командных сигналов остальных каналов, что достигается увеличением коэффициентов усиления остальных каналов. Однако в известном способе управляющие сигналы по тангажу, рысканию и крену не перераспределяются оптимальным образом между исправными каналами, что не позволяет при использовании известного способа реализовать желаемые управляющие сигналы по тангажу, рысканию и крену. Кроме того, при отказе рулевого привода одного из каналов, но сохранении тяги двигателя этого канала, возможно неуправляемое угловое движение камеры этого двигателя, создающее значительные возмущающие моменты по тангажу, рысканию и (или) крену. При этом может оказаться невозможной установка штока рулевого привода отказавшего канала в среднее положение. В известном способе в выработке командных сигналов исправных каналов не используется сигнал обратной связи отказавшего канала, камера двигателя которого совершает неуправляемое движение, что также не дает возможности при использовании известного способа реализовать желаемые управляющие сигналы по тангажу, рысканию и крену. В то же время, как будет показано ниже, при наличии четырех или более каналов системы управления, в случае отказа одного из каналов, в линейной зоне возможна практически точная реализация желаемых управляющих сигналов по тангажу, рысканию и крену даже при неуправляемом угловом движении камеры двигателя отказавшего канала. Наконец, предусмотренное способом-прототипом увеличение коэффициентов усиления остальных (неотказавших) каналов может быть нежелательным с точки зрения обеспечения устойчивости углового движения ракеты с учетом колебаний компонентов жидкого топлива в баках и упругих колебаний конструкции.

Задачей предложенного изобретения является разработка способа защиты от аварии многоканальных систем управления ракет, повышающего надежность идентификации в полете отказа канала системы управления, а также качество управления угловым движением ракеты с помощью остальных (исправных) каналов системы управления.

Техническим результатом предлагаемого изобретения является повышение вероятности успешного продолжения полета при отказе рулевого привода одного из каналов системы управления.

Указанный технический результат достигается тем, что в способе защиты от аварии многоканальных систем управления ракет, включающем формирование в каждом канале, соответствующем определенной камере сгорания, информативного сигнала в виде разности командного сигнала и сигнала обратной связи, формирование сигнала отключения соответствующего канала системы управления в виде сигнала установки штока рулевого привода этого же канала в среднее положение, в соответствии с изобретением сигнал отключения канала формируют в случае превышения вычисленным на временном промежутке определенной длительности интегралом от модуля информативного сигнала заранее выбранного порогового значения, при этом командные сигналы остальных каналов формируют в виде сумм или разностей управляющих сигналов по тангажу, рысканию и крену и сигнала обратной связи отключенного канала с коэффициентами, зависящими от номера отключенного канала, таким образом, чтобы обеспечить создание требуемых суммарных управляющих моментов по тангажу, рысканию и крену.

Сущность предлагаемого изобретения иллюстрируется фиг.1-4.

Фиг.1 - Схема расположения сопел двигателя и рулевых приводов для примера 1.

Фиг.2 - Результаты математического моделирования отказа рулевого привода для примера 1.

Фиг.3 - Схема расположения сопел двигателя и рулевых приводов для примера 2.

Фиг.4 - Результаты математического моделирования отказа рулевого привода для примера 2.

Рассмотрим два примера реализации предлагаемого способа защиты от аварии многоканальных систем управления ракет.

Пример 1

Система управления создаваемой в ГКНПЦ им. М.В.Хруничева ракеты космического назначения (РКН) «Ангара-А5» на участке работы двигателей I ступени может рассматриваться как 8-канальная. Ракета состоит из 4-х боковых блоков (ББ), являющихся 1-ой ступенью, и центрального блока, включающего II и III ступени, а также космическую головную часть. Камера сгорания (КС) каждого из 4 двигателей ББ, установленных в карданных подвесах, может отклоняться в двух взаимно перпендикулярных направлениях с помощью двух рулевых приводов (РП), при этом продольная ось камеры каждого двигателя может занимать любое положение внутри конуса, вершиной которого является центр качания камеры, а угол между образующей конуса и его осью равен максимально возможному углу отклонения камеры (≈8°). Схема расположения сопел двигателей и рулевых приводов показана на фиг.1. Стрелками показаны направления положительных отклонений δ1, …, δ8 (положительным считается отклонение камеры при выдвижении штока соответствующего РП). Система управления движением ракеты периодически (с тактом БЦВМ, равным 0,032768 с) вырабатывает управляющие сигналы по тангажу δϑ, рысканию δψ и крену δγ:

где Δϑ, Δψ, Δγ - рассогласования по углам тангажа, рыскания и крена соответственно.

Сигналы δϑ, δψ, δγ можно рассматривать как желаемые углы отклонения некоторых «обобщенных» органов управления. При безотказной работе рулевых приводов для реализации управляющего сигнала δϑ используются РП 2, 3, 6 и 7, перемещения штоков которых создают момент тангажа. Аналогично, для реализации управляющего сигнала рыскания 8 используются РП 1, 4, 5 и 8. Управляющий сигнал по крену 5 отрабатывается всеми 8 рулевыми приводами, при этом для минимизации углов отклонения камер плечи управляющих сил выбираются максимальными. В результате законы формирования командных сигналов для 8 каналов системы управления при безотказной работе всех каналов имеют вид:

При этом управляющие моменты, создаваемые двигателями, равны (в предположении малости углов):

В соответствии с предлагаемым способом защиты в каждом из 8 каналов с тактом работы БЦВМ формируется информативный сигнал , где δi - командный сигнал, а - сигнал обратной связи i-го канала (i=1,…,8). На заданном интервале времени (для рассматриваемой РКН на участке работы двигателя I ступени длительность этого интервала выбрана равной Δt=1с) вычисляется интеграл

где t - текущий момент времени. Интеграл (4) сравнивается с пороговым значением σ0 (для рассматриваемого примера σ0 выбрано равным 3 гр·с). В случае превышения интегралом от модуля информативного сигнала σi(t) порогового значения σ0 в соответствии с изобретением формируется сигнал отключения i-го канала. Этот сигнал отключения формируется в виде нулевого командного сигнала на рулевой привод i-го канала, что соответствует приведению штока РП в среднее положение. В зависимости от вида отказа рулевого привода (заклинивание золотника гидроусилителя, отказ электромеханического преобразователя на входе гидроусилителя, обрыв электрической обратной связи и др.) РП либо отработает подаваемый на него нулевой командный сигнал (при этом камера двигателя займет неотклоненное положение), либо шток рулевого привода и жестко связанная с ним камера двигателя будут совершать неуправляемое движение. Предположим, для определенности, что отказал РП 1-го канала, при этом известен сигнал обратной связи этого канала . Для создания желаемых управляющих моментов (3) требуется выполнение условий

Отказ РП 1-го канала не влияет на реализацию управляющего сигнала по тангажу, поэтому в каналах 2, 3, 6 и 7 можно сохранить законы управления (2):

В этом случае из системы уравнений (5) получим:

При дополнительном требовании минимизации суммы будем иметь:

Соотношения (6), (7), (9) являются законами формирования командных сигналов для остальных (неотключенных) каналов системы управления. Они представляют собой суммы или разности управляющих сигналов по тангажу, рысканию и крену и сигнала обратной связи отключенного канала, в данном случае канала номер 1. Аналогичные соотношения можно получить для любого другого номера отказавшего канала. При этом, как уже указывалось, числовые коэффициенты при управляющих сигналах δϑ, δψ, и δγ, а также при сигнале обратной связи отключенного канала, зависят от номера отключенного канала.

На фиг.2 представлены результаты математического моделирования движения рассматриваемой РКН при возникновении отказа рулевого привода канала 1 на 80 с полета (время от момента окончания точного приведения). Отказ заключается в самопроизвольном перемещении штока РП в крайнее положение (при этом соответствующая камера отклоняется на предельный угол δ1=8°). Из фиг.2 видно, что после переходного процесса рассогласования по углам тангажа, рыскания и крена устанавливаются близкими к 0. На фиг.2 показан также угол отклонения камеры в наиболее нагруженном канале 8 - он составляет после отказа около 7° и не выходит на ограничение.

Пример 2

Система управления РКН «Ангара-А5» на участке работы двигателя III ступени может рассматриваться как 4-канальная. Ракета имеет 4-х камерный двигатель, каждая КС которого отклоняется в тангенциальном направлении с помощью своего РП. Диапазон углов отклонения каждой камеры - от -4° до 4°. На фиг.3 стрелками показаны направления положительных отклонений камер δ1, …, δ4 (положительным считается отклонение КС при выдвижении штока соответствующего рулевого привода). Система управления движением ракеты периодически (с тактом БЦВМ, равным 0,032768 с) вырабатывает управляющие сигналы по тангажу δϑ, рысканию 6ψ и крену δγ в соответствии с законами управления (1). При безотказной работе рулевых приводов для реализации управляющего сигнала δϑ используются КС 2 и 4, отклонение которых создает момент тангажа. Аналогично, для реализации управляющего сигнала рыскания δψ используются КС 1 и 3. Управляющий сигнал по крену δγ отрабатывается всеми 4 камерами. В результате законы формирования командных сигналов для 4 каналов системы управления при безотказной работе всех каналов имеют вид:

При этом управляющие моменты, создаваемые всеми КС двигателя, равны (в предположении малости углов):

В соответствии с предлагаемым способом защиты для каждого из 4 каналов с тактом работы БЦВМ формируется информативный сигнал , где δi - командный сигнал, а - сигнал обратной связи i-го канала (i=1, …, 4). На заданном интервале времени (для рассматриваемой РКН на участке работы двигателя III ступени длительность этого интервала выбрана равной Δt=1 с) вычисляется интеграл (4), который сравнивается с пороговым значением σ0 (для рассматриваемого примера σ0 выбрано равным 2 гр·с). В случае превышения интегралом σi(t) значения σ0 в соответствии с изобретением формируется сигнал отключения i-го канала. Этот сигнал отключения формируется в виде нулевого командного сигнала на РП i-го канала, что соответствует приведению штока рулевого привода в среднее положение. В зависимости от вида отказа РП либо отработает подаваемый на него нулевой командный сигнал (при этом КС займет неотклоненное положение), либо шток РП и связанная с ним КС сгорания будут совершать неуправляемое движение. Предположим, для определенности, что отказал рулевой привод i-го канала, при этом известен сигнал обратной связи этого канала . Для создания желаемых управляющих моментов (11) требуется выполнение условий

откуда

Соотношения (13) являются законами формирования командных сигналов для остальных (неотключенных) каналов системы управления. Они представляют собой суммы или разности управляющих сигналов по тангажу, рысканию и крену и сигнала обратной связи отключенного канала, в данном случае канала номер 1. Аналогичные соотношения можно получить для любого другого номера отказавшего канала. При этом числовые коэффициенты при управляющих сигналах δϑ, δψ и δγ, а также при сигнале обратной связи отключенного канала, зависят от номера отключенного канала.

На фиг.4 представлены результаты математического моделирования движения рассматриваемой РКН при возникновении отказа рулевого привода канала 1 на 400 с полета (время от команды «Контакт подъема). Отказ заключается в самопроизвольном движении штока РП этого канала, приведшего к повороту КС с угловой скоростью 1 гр/с и выходу ее на угол отклонения, равный 3,5°. После этого камера остается в достигнутом ею положении и не реагирует на командный сигнал. При использовании предлагаемого способа управляющие сигналы по тангажу, рысканию и крену перераспределяются так, что оставшиеся каналы системы управления парируют моментные возмущения, создаваемые КС отказавшего канала, даже несмотря на то, что не удается установить шток РП этого канала в среднее положение. РКП при этом продолжает полет по заданной траектории.

Следует отметить, что предлагаемый способ защиты от аварии сохраняет после отказа РП неизменными коэффициенты усиления законов управления (1), выбранные разработчиком системы управления для штатного полета из условия обеспечения устойчивости движения РКП с учетом колебаний жидкости в баках и упругих колебаний конструкции.

Таким образом, благодаря реализации предложенного в изобретении технического решения решается задача разработки способа защиты от аварии многоканальных систем управления ракет, повышающего надежность идентификации в полете отказа канала системы управления, а также качество управления угловым движением ракеты с помощью остальных (исправных) каналов системы управления, и достигается технический результат - повышение вероятности успешного продолжения полета при отказе рулевого привода одного из каналов системы управления.

Источник информации

1. Полухин Д.А., Цуриков Ю.А., Владимиров А.В. Способ защиты от аварии многоканальных систем управления ракет. Патент на изобретение № RU 2058918 С1, кл. B64G 1/24 от 14.11.1983 г.

Способ защиты от аварии многоканальных систем управления ракет, включающий формирование в каждом канале, соответствующем определенной камере сгорания, информативного сигнала в виде разности командного сигнала и сигнала обратной связи, формирование сигнала отключения соответствующего канала системы управления в виде сигнала установки штока рулевого привода этого же канала в среднее положение, отличающийся тем, что сигнал отключения канала формируют в случае превышения вычисленным на временном промежутке определенной длительности интегралом от модуля информативного сигнала заранее выбранного порогового значения, при этом командные сигналы остальных каналов формируют в виде сумм или разностей управляющих сигналов по тангажу, рысканию и крену и сигнала обратной связи отключенного канала с коэффициентами, зависящими от номера отключенного канала, таким образом, чтобы обеспечить создание требуемых суммарных управляющих моментов по тангажу, рысканию и крену.
СПОСОБ ЗАЩИТЫ ОТ АВАРИИ МНОГОКАНАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ РАКЕТ
СПОСОБ ЗАЩИТЫ ОТ АВАРИИ МНОГОКАНАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ РАКЕТ
СПОСОБ ЗАЩИТЫ ОТ АВАРИИ МНОГОКАНАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ РАКЕТ
СПОСОБ ЗАЩИТЫ ОТ АВАРИИ МНОГОКАНАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ РАКЕТ
Источник поступления информации: Роспатент

Showing 71-80 of 104 items.
13.01.2017
№217.015.897b

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД,...
Тип: Изобретение
Номер охранного документа: 0002602464
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b78b

Турбонасосный агрегат

Изобретение относится к турбонасосостроению и может быть использовано в турбонасосных агрегатах (ТНА) ЖРД верхних ступеней ракет многоразового включения. ТНА включает входной патрубок (1) пониженного давления, корпус (2) с размещенными в нем на валу центробежным насосом (3) и турбиной (4),...
Тип: Изобретение
Номер охранного документа: 0002614911
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c989

Входной патрубок газовой турбины

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Входной патрубок газовой турбины содержит кольцевой газовый коллектор, корпус турбины и центральную...
Тип: Изобретение
Номер охранного документа: 0002619439
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.d7c8

Способ управления угловым движением ракеты космического назначения

Изобретение относится к способам управления движением ракет космического назначения (РКН). Способ управления угловым движением РКН заключается в управлении углами тангажа и рыскания путем отклонения в двух взаимно-перпендикулярных плоскостях установленной в карданном подвесе камеры сгорания...
Тип: Изобретение
Номер охранного документа: 0002622427
Дата охранного документа: 19.06.2017
19.01.2018
№218.016.02ef

Способ сварки трением с перемешиванием и устройство для его осуществления

Изобретение может быть использовано при сварке трением с перемешиванием. В процессе сварки осуществляют слежение и регулирование загрузки перемещаемого сварочного инструмента по давлению загрузки. Осуществляют контроль расположения свариваемых кромок относительно подкладного элемента, раскрытия...
Тип: Изобретение
Номер охранного документа: 0002630147
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1169

Центробежная турбина

Изобретение относится к области ракетного двигателестроения и может быть использовано в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей с продолжительным временем работы при использовании любых компонентов топлива, как высококипящих, так и низкокипящих. Центробежная турбина...
Тип: Изобретение
Номер охранного документа: 0002633974
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.2000

Жидкостный ракетный двигатель малой тяги

Изобретение относится к двигателестроению и может быть использовано в конструкции жидкостных ракетных двигателей малой тяги (ЖРДМТ). ЖРДМТ, содержащий камеру 1, смесительную головку с внутренним днищем 2, осевую центробежную форсунку 3, периферийный пояс струйных форсунок 4, кольцевой...
Тип: Изобретение
Номер охранного документа: 0002641323
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.44c0

Лабиринтное уплотнение-демпфер газовой турбины

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Лабиринтное уплотнение-демпфер для гашения энергии колебаний вращающегося в бесконтактных подшипниках ротора...
Тип: Изобретение
Номер охранного документа: 0002650013
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.5cc5

Способ дросселирования тяги жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Способ дросселирования тяги ЖРД, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при котором после уменьшения массовых расходов ниже заданных значений подают газ в полости магистралей питания камеры на...
Тип: Изобретение
Номер охранного документа: 0002656073
Дата охранного документа: 30.05.2018
24.07.2018
№218.016.746e

Жидкостная ракетная двигательная установка космического аппарата

Изобретение относится к ракетно-космической технике. Жидкостная ракетная двигательная установка космического аппарата, содержащая маршевый двигатель с насосной системой подачи компонентов топлива в камеру сгорания из объемных баков 1 низкого давления, двигатели 5 ориентации и стабилизации с...
Тип: Изобретение
Номер охранного документа: 0002662011
Дата охранного документа: 23.07.2018
Showing 71-80 of 84 items.
13.01.2017
№217.015.897b

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД,...
Тип: Изобретение
Номер охранного документа: 0002602464
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b78b

Турбонасосный агрегат

Изобретение относится к турбонасосостроению и может быть использовано в турбонасосных агрегатах (ТНА) ЖРД верхних ступеней ракет многоразового включения. ТНА включает входной патрубок (1) пониженного давления, корпус (2) с размещенными в нем на валу центробежным насосом (3) и турбиной (4),...
Тип: Изобретение
Номер охранного документа: 0002614911
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c989

Входной патрубок газовой турбины

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Входной патрубок газовой турбины содержит кольцевой газовый коллектор, корпус турбины и центральную...
Тип: Изобретение
Номер охранного документа: 0002619439
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.d7c8

Способ управления угловым движением ракеты космического назначения

Изобретение относится к способам управления движением ракет космического назначения (РКН). Способ управления угловым движением РКН заключается в управлении углами тангажа и рыскания путем отклонения в двух взаимно-перпендикулярных плоскостях установленной в карданном подвесе камеры сгорания...
Тип: Изобретение
Номер охранного документа: 0002622427
Дата охранного документа: 19.06.2017
19.01.2018
№218.016.02ef

Способ сварки трением с перемешиванием и устройство для его осуществления

Изобретение может быть использовано при сварке трением с перемешиванием. В процессе сварки осуществляют слежение и регулирование загрузки перемещаемого сварочного инструмента по давлению загрузки. Осуществляют контроль расположения свариваемых кромок относительно подкладного элемента, раскрытия...
Тип: Изобретение
Номер охранного документа: 0002630147
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1169

Центробежная турбина

Изобретение относится к области ракетного двигателестроения и может быть использовано в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей с продолжительным временем работы при использовании любых компонентов топлива, как высококипящих, так и низкокипящих. Центробежная турбина...
Тип: Изобретение
Номер охранного документа: 0002633974
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.2000

Жидкостный ракетный двигатель малой тяги

Изобретение относится к двигателестроению и может быть использовано в конструкции жидкостных ракетных двигателей малой тяги (ЖРДМТ). ЖРДМТ, содержащий камеру 1, смесительную головку с внутренним днищем 2, осевую центробежную форсунку 3, периферийный пояс струйных форсунок 4, кольцевой...
Тип: Изобретение
Номер охранного документа: 0002641323
Дата охранного документа: 17.01.2018
17.04.2019
№219.017.1569

Топливный бак

Изобретение относится к топливным бакам космических аппаратов, работающим в условиях невесомости и при переходе от невесомости к перегрузкам. Топливный бак содержит корпус с заборным и дренажным отверстиями и герметично закрепленную на стенках корпуса поперечную перегородку. Перегородка вогнута...
Тип: Изобретение
Номер охранного документа: 0002293665
Дата охранного документа: 20.02.2007
24.05.2019
№219.017.6053

Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты

Изобретение относится к ракетно-космической технике, а именно к ракетам космического назначения. Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты заключается в выполнении маневра углового разворота ракеты по заранее введенной в систему управления...
Тип: Изобретение
Номер охранного документа: 0002407680
Дата охранного документа: 27.12.2010
22.06.2019
№219.017.8e5a

Следящая система автоматического управления нестационарным динамическим объектом

Следящая система автоматического управления нестационарным объектом содержит три векторных сумматора, восемь матричных коэффициентов усиления, векторный интегратор, задатчик дополнительного программного сигнала, задатчик основного программного сигнала, соединенные определенным образом....
Тип: Изобретение
Номер охранного документа: 0002692204
Дата охранного документа: 21.06.2019
+ добавить свой РИД