×
10.06.2014
216.012.cbb9

Результат интеллектуальной деятельности: ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям (ФП) для прямого преобразования солнечной энергии в электрическую энергию. Область применения - возобновляемые источники энергии. Согласно изобретению в полупроводниковом ФП, состоящем из монокристаллических кремниевых пластин с вертикально расположенными на поверхности нитевидными кристаллами, полученными методами глубокого плазмохимического травления и имеющими диффузионные коаксиальные р-n переходы, проходящие через свободные от нитевидных кристаллов участки поверхности подложки и соединенные между собой в единую горизонтальную конструкцию металлическими прокладками, с токовыводящими контактами, со светоприемной поверхностью с диэлектрическим просветляющим покрытием. Нитевидные кристаллы выполнены в виде правильных прямых призм, высота которых превышает оптическую глубину поглощения солнечного излучения в кремнии, а длина ребра основания не превышает диффузионной длины неосновных носителей заряда в кремниевой микроструктуре. Также предложен способ изготовления ФП. Техническим результатом изобретения является повышение КПД ФП путем уменьшения рекомбинационных потерь за счет сокращения пути транспорта неравновесных носителей заряда и отсутствия примесных центров с глубокими энергетическими уровнями. 2 н. и 1 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям для прямого преобразования солнечной энергии в электрическую энергию с помощью солнечных батарей. Область применения - возобновляемые источники энергии.

Сущность технического решения: предложено использовать кремниевую пластину, лицевая поверхность которой структурирована вертикальными нитевидными кристаллами, полученными методами глубокого плазмохимического травления и имеющими диффузионные коаксиальные р-n переходы, проходящие через свободные от нитевидных кристаллов участки поверхности подложки и соединенные между собой в единую горизонтальную конструкцию металлическими прокладками, с токовыводящими контактами, со светоприемной поверхностью с диэлектрическим просветляющим покрытием. Нитевидные кристаллы выполнены в виде правильных прямых призм, высота которых превышает оптическую глубину поглощения солнечного излучения в кремнии, а длина ребра основания не превышает диффузионной длины неосновных носителей заряда в кремниевой микроструктуре.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известны фотоэлектрические преобразователи (ФП) для прямого преобразования солнечной энергии планарной конструкции с р-n-переходами, расположенными вдоль светоприемной (фоточувствительной) поверхности, т.е. перпендикулярно к потоку светового излучения. Такого типа ФП не имеют высокого коэффициента полезного действия (КПД), поскольку глубина оптического поглощения материала фотопреобразователя превышает диффузионную длину неосновных носителей заряда [1]. Известно техническое решение полупроводникового ФП с р-n-переходами, которые расположены вертикально к светоприемной поверхности, т.е. вдоль потока светового излучения [2]. Такой ФП не обладает максимально возможным коэффициентом полезного действия (КПД), поскольку имеет относительно небольшой объем области пространственного заряда (ОПЗ) р-n-переходов и низкую эффективность преобразования ультрафиолетового излучения (УФ). Ближайшим аналогом является солнечный элемент с полупроводниковыми нитевидными кристаллами на подложке, описанный в патенте [3]. Отличием этого элемента является то, что подложка представляет собой полупроводниковую пластину (111), а кристаллы легированы так, что образуется р-n переход поперечно оси кристалла. Нижняя часть кристаллов вместе с подложкой легирована акцепторной примесью и представляет собой коллекторную область солнечного элемента. Верхняя часть кристаллов легирована донорной примесью и служит эмиттерной составляющей элемента.

Поперечная геометрия р-n перехода на нитевидных кристаллах имеет ряд существенных недостатков. Во-первых, за счет наличия дополнительной к подложке р-области нитевидных кристаллов ухудшаются условия выполнения требований к высокоэффективному солнечному элементу, поскольку основным процессом, ограничивающим эффективность солнечных батарей, является высокая рекомбинация неосновных носителей при их транспорте к р-n переходу через полупроводник. Во-вторых, глубина поглощения света в полупроводнике и длина диффузии носителей являются конкурирующими конструктивными параметрами. В-третьих, суммарная площадь р-n перехода в кристаллах оказывается меньше площади аналогичной электронно-дырочной структуры при изготовлении ее на самой подложке, поскольку нитевидные кристаллы не покрывают полностью площадь подложки, что снижает выходную мощность фотопреобразовательного элемента. В-четвертых, используемые в способе изготовления для затравки роста нитевидных кристаллов металлы-катализаторы (например, Au в кремнии) создают в полупроводниках глубокие примесные уровни и могут являться эффективными центрами рекомбинации, способными захватывать свободные электроны.

Эффективность преобразования солнечной энергии полупроводниковыми ФП решающим образом зависит от рекомбинационных потерь неосновных носителей заряда (ННЗ) в полупроводниковых пластинах. Устранение и ослабление факторов, приводящих к рекомбинационным потерям ННЗ в полупроводниковых ФП, ведет к увеличению их КПД. Техническим результатом изобретения является повышение КПД ФП путем уменьшения рекомбинационных потерь за счет сокращения пути транспорта ННЗ и отсутствия примесных центров с глубокими энергетическими уровнями.

Целью настоящего изобретения является создание такой конструкции ФП, у которого глубина поглощения света в полупроводнике и длина диффузии неосновных носителей не являются конкурирующими конструктивными параметрами, который не имеет глубоких примесных уровней, способных быть эффективными центрами рекомбинации и захватывать ННЗ, а также который отвечал бы другим требованиям к высокоэффективному солнечному элементу.

Эта цель достигается посредством конструкции ФП согласно п.1 формулы изобретения. Предпочтительные варианты изобретения, а также способ изготовления приведены в остальных пунктах формулы изобретения.

ФП согласно изобретению выполнен из монокристаллической кремниевой пластины с кристаллографической ориентацией {100}, на поверхности которой сформирована упорядоченная система вертикально расположенных призматических нитевидных кристаллов с р-n переходами, проходящими через свободные участки поверхности подложки [5]. Нитевидные кристаллы выполнены в виде правильных прямых призм методами плазмохимического глубокого изотропного травления, причем их высота превышает оптическую глубину поглощения солнечного излучения в кремнии, а длина ребра основания не превышает диффузионной длины неосновных носителей заряда в кремниевой микроструктуре. Р-n переход сформирован коаксиально оси кристаллов посредством легирования донорной и акцепторной примесями и проходит через свободные участки поверхности подложки. Пространственные промежутки между кристаллами заполнены металлическими прокладками, соединяющими р-n переходы в единую конструкцию с токовыводящими контактами. На обратной стороне пластины также расположено контактное поле, которое обеспечивает электрическое присоединение материала подложки.

Нитевидные кристаллы освещаются со стороны, перпендикулярной их оси, поэтому глубина области поглощения света и диффузионная длина неосновных носителей при их транспорте к р-n переходу перестают быть конкурирующими конструктивными параметрами - они определяют разные геометрические размеры системы, соответственно аксиальную протяженность и диаметр нитевидного кристалла. Коаксиальная архитектура (центральное ядро р-типа проводимости и оболочка n-типа проводимости) нитевидных кристаллов согласно изобретению обладает преимуществом в эффективности транспорта неосновных носителей заряда к р-n переходу. Радиальный путь транспорта неосновных носителей по масштабам значительно менее глубины осевого поглощения света в нитевидном кристалле. Возбужденные светом электроны вследствие поперечных размеров нитевидных кристаллов, не превышающих диффузионной длины ННЗ, могут достигать коаксиального р-n перехода с высокой эффективностью без рекомбинации.

В преимущественном исполнении для увеличения площади светоприемной поверхности величина поверхностной плотности расположения нитевидных кристаллов на подложке должна быть наибольшей, но она ограничена технологическими возможностями получения кристаллов. Нитевидные кристаллы в форме правильных прямых призм позволяют обеспечить наибольшую плотность их размещения на поверхности пластины кремния. В одном из предпочтительных вариантов изобретения для минимизации величины светового отражения и обеспечения низкой скорости поверхностной рекомбинации светоприемная поверхность нитевидных кристаллов текстурирована и покрыта диэлектрическим просветляющим покрытием.

Введение акцепторной или донорной примеси в процессе создания р-n перехода может быть эффективно осуществлено с использованием газофазных (РН3, AsH3) или жидкостных (PCl3, BBr3) источников. Количество и размещение множественных нитевидных нанокристаллов на подложке, а также их форма и поперечные размеры могут быть заданы с помощью фотолитографически структурированной травильной маски из задубленого фоторезиста, нитрида или оксида. Для воспроизводимости переноса элементов рисунка заданных размеров с фотошаблона на пластину фотолитографический процесс должен обладать соответствующей разрешающей способностью. Для целей настоящего изобретения подходящими могут быть методы электронной и ИМПРИНТ-литографии, обеспечивающие максимальное разрешение до 2 нм.

Металлические материалы обеспечивают электрическое присоединение области эмиттерной области кристаллов и подложки, а также механическую прочность и целостность конструкции преобразовательного элемента. Нанесение металлов может быть осуществлено термическим, электронно-лучевым или магнетронным напылением.

Текстурирование торцевой поверхности кристаллов кремния осуществляется химическим травлением в анизотропном травителе.

Использование метода плазмохимического травления при изготовлении структур нитевидных кристаллов на поверхности кремниевой пластины позволяет исключить присутствие примесных центров с глубокими энергетическими уровнями. Это способствует снижению рекомбинационных потерь в ФП. Глубокое изотропное плазмохимическое травление пластин кремния может быть осуществлено по технологии Bosch-процесса [4].

Способ изготовления ФП согласно изобретению более подробно поясняется с помощью примеров выполнения и соответствующих 5 фигур. Фигуры относятся при этом исключительно к примерам выполнения, и их не следует рассматривать как ограничивающие.

На фиг.1-5 изображены схематические сечения подложки с нитевидными кристаллами на различных этапах изготовления солнечного элемента.

Исходной точкой способа согласно настоящему изобретению является легированная акцепторной примесью кремниевая пластина, имеющая кристаллографическую ориентацию {100}, с множественными вертикальными нитевидными кристаллами. На фиг.1 этот этап способа изображен с помощью схематичного и не в масштабе сечения кремниевой пластины 1 и нитевидных кристаллов 2. С тыльной стороны пластины показана р+ - область 3.

Фиг.2: на первом этапе в кристаллах выполняют коаксиальные р-n переходы 4. Для этого легируют внешнюю оболочку кристаллов и приповерхностные слои подложки донорной примесью на глубину приблизительно до 0,1-0,5 мкм.

Фиг.3: затем в пространственные промежутки между кристаллами на всю высоту кристаллов наносят металлический проводник 5, например Ti/Cu/Sn (магнетрон, температура 150°С).

Фиг.4: на следующем этапе торцевые поверхности кристаллов текстурируют 6 и наносят пассивирующий слой 7, например TiO2, толщиной обычно не превышающей 1,5 мкм.

Фиг.5: на обратную сторону методами трафаретной печати с помощью спекаемой пасты на основе серебра наносят электрические контакты 8, которые затем вжигают и спекают. Содержащийся в пасте легирующий материал создает p+-легирование и омический контакт с акцепторной зоной кремниевой подложки.

Изготовленный по вышеприведенному описанию солнечный элемент согласно изобретению обладает всеми предпосылками, необходимыми для достижения КПД свыше 20 процентов [5]. Требованию, заключающемуся в понижении высокой рекомбинации неосновных носителей при их транспорте к электродам через полупроводник, отвечает согласно изобретению солнечный элемент с нитевидными кристаллами, имеющими высокое аспектное отношение длина/диаметр. Низкая скорость поверхностной рекомбинации может быть достигнута за счет оксидного пассивирования торцов нитевидных кристаллов. Низкие требуемые значения отражения <4 процентов получают с помощью стандартных просветляющих покрытий. Другое преимущество солнечных элементов с нитевидными кристаллами заключается в использованиии преимуществ машинного макромонтажа изделия, поскольку для припаивания выводов соответствующих соединений не требуются манипуляции с отдельными кристаллами. Это упрощает способ монтажа и повышает надежность способа. Солненчые элементы согласно изобретению имеют возможность полностью автоматизированного промышленного изготовления.

Список источников

1. Патент США 4320250, кл. H01L 31/0224, опубл. 16.03.1982 г.

2. Патент РФ 2127009, кл. H01L 31/18, опубл. 27.02.99 г.

3. Patent USA №200602076447 А1. High efficiency inorganic nanorod-enhanced photovoltaic devices / L. Tsakalakos et al.

4 Виноградов А.И., Зарянкин Н.М., Прокопьев Е.П., Тимошенков С.П. Исследование некоторых аспектов процесса глубокого травления кремния для элементов МЭМС // Тезисы докл. XXXVI Междунарн. (Зеленоградской) конф. По физике плазмы и УТС. 9-13 февр. 2009 г.

5. Андрюшин Е.А., Силин А.П. Физические проблемы солнечной энергетики / УФН, 1991. Т.161. №8. С.129-139.


ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
27.01.2014
№216.012.9be3

Способ электрохимического извлечения свинца из свинцово-кислотных отходов аккумуляторных батарей

Изобретение относится к способу извлечения свинца из отходов аккумуляторных батарей. Способ включает электролитическое осаждение свинца из щелочных растворов на асимметричном импульсном токе с варьированием периодической последовательности пакетов положительных n+ и отрицательных n- импульсов...
Тип: Изобретение
Номер охранного документа: 0002505613
Дата охранного документа: 27.01.2014
20.08.2014
№216.012.eb62

Способ получения нитевидных нанокристаллов полупроводников

Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой...
Тип: Изобретение
Номер охранного документа: 0002526066
Дата охранного документа: 20.08.2014
27.12.2014
№216.013.15b9

Способ выращивания планарных нитевидных кристаллов полупроводников

Изобретение относится к технологии получения полупроводниковых материалов и предназначено для управляемого выращивания нитевидных кристаллов полупроводников. Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением...
Тип: Изобретение
Номер охранного документа: 0002536985
Дата охранного документа: 27.12.2014
10.11.2015
№216.013.8f00

Способ получения массивов наноразмерных нитевидных кристаллов кремния с управляемой поверхностной плотностью

Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения массивов наноразмерных нитевидных кристаллов кремния включает подготовку ростовой кремниевой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель...
Тип: Изобретение
Номер охранного документа: 0002568217
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9429

Способ получения массивов углеродных нанотрубок с управляемой поверхностной плотностью

Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время...
Тип: Изобретение
Номер охранного документа: 0002569548
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.942c

Способ получения отверстий в монокристаллических пластинах кремния

Изобретение относится к полупроводниковой технике, а именно к области создания микроструктурных элементов электронных устройств. Способ получения отверстий в монокристаллических пластинах кремния включает подготовку полупроводниковой пластины путем нанесения на ее поверхность мелкодисперсных...
Тип: Изобретение
Номер охранного документа: 0002569551
Дата охранного документа: 27.11.2015
25.08.2017
№217.015.bf45

Способ выращивания легированных нитевидных нанокристаллов кремния

Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК). Способ включает подготовку полупроводниковой пластины путем нанесения на ее...
Тип: Изобретение
Номер охранного документа: 0002617166
Дата охранного документа: 21.04.2017
Showing 141-150 of 285 items.
10.07.2015
№216.013.5cad

Способ изготовления проволочного электрода-инструмента для электроэрозионной обработки

Изобретение относится к способу изготовления проволочного электрода-инструмента для электроэрозионной обработки и может быть использовано при электроэрозионном прошивании отверстий малого диаметра с большой глубиной в металлических материалах. Закрепляют конец электрода-инструмента в подвижной...
Тип: Изобретение
Номер охранного документа: 0002555266
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d45

Камера жидкостного ракетного двигателя

Изобретение относится к области ракетной техники может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит смесительную головку, внутреннюю профилированную оболочку, на внешней поверхности которой выполнены ребра тракта охлаждения, наружную...
Тип: Изобретение
Номер охранного документа: 0002555418
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d46

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную головку, регенеративно...
Тип: Изобретение
Номер охранного документа: 0002555419
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6042

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой,...
Тип: Изобретение
Номер охранного документа: 0002556183
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6137

Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции...
Тип: Изобретение
Номер охранного документа: 0002556429
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.613a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов....
Тип: Изобретение
Номер охранного документа: 0002556432
Дата охранного документа: 10.07.2015
+ добавить свой РИД