×
25.08.2017
217.015.bf45

Способ выращивания легированных нитевидных нанокристаллов кремния

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК). Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl и легирующее соединение РСl, поступающие из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, при этом выращивание кристаллов ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl]/[SiCl], равное m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m, большего или равного 0,01, количественное значение молярного отношения [PCl]/[SiCl] во втором источнике, используемом на основной стадии роста, устанавливают как m, равное 0. Изобретение обеспечивает возможность получения легированных нитевидных нанокристаллов Si, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n-n-n) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками. 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к области получения полупроводниковых материалов, предназначено для выращивания на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК) легированных нитевидных нанокристаллов (ННК) кремния, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n--n-n-) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками.

В настоящее время известен способ выращивания ННК Si, легированных в процессе ПЖК-роста атомами металла-катализатора, находящегося в виде жидкофазной капли на вершине кристалла [Wagner R S, Ellis WC Vapour-Liquid-Solid Mechanism of Single Crystal Growth // Appl. Phys. Lett., 1964. V. 4. N. 5. P. 89-90]. Поскольку катализаторами роста ННК Si являются металлы (Au, Cu, Ni, Pt, Pd и др.), создающие глубокие донорные уровни в энергетическом спектре запрещенной зоны Si, то выращенные данным способом кристаллы обладают низкой электрической проводимостью n-типа, а изготавливаемые к ним выводные электрические контакты металл-кремний обладают высоким переходным сопротивлением и нелинейными вольт-амперными характеристиками, что не позволяет использовать такие ННК для практических применений. Другим недостатком способа является невозможность создания областей ННК с разным уровнем легирования, так как примеси с глубокими энергетическими уровнями обладают высокими коэффициентами диффузии в Si и созданные области легирования легко размываются в течение небольшого времени.

Известен способ выращивания легированных ННК Si с использованием газообразного примесного соединения РН3 (гидрида фосфора) [Wang Y., Lew K. - K., Но Т. - Т. et al. Use of Phosphine as an n-Type Dopant Sourse for Vapor-Liquid-Solid Growth of Silicon Nanowires // Nano Lett, 2005. V. 5. No. 11. PP. 2139-2143], в основе которого лежит процесс введения в ННК легирующей мелкой донорной примеси из газовой фазы во время ПЖК-роста за счет применения отдельного потока с газообразным примесным соединением, который перед зоной роста кристалла смешивается с основным потоком реагирующих газов (SiH4 и H2) и создает постоянное отношение компонентов PH3/SiH4 в газовой фазе. Недостатками данного способа являются необходимость снижения концентрации легирующего компонента в парогазовой смеси до очень малых количеств и применения в этой связи систем дополнительного двух-трехступенчатого разбавления РН3 водородом, необходимость точного измерения сверхмалых количеств газообразных веществ, невозможность обеспечить различные уровни легирования ННК на различных стадиях роста, а также высокая токсичность РН3, разложение его при хранении и повышенные требования к герметичности газовых магистралей и реакционной камеры, что затрудняет управление процессом легирования кристаллов.

Наиболее близким техническим решением является способ получения легированных ННК Si химическим осаждением из паров SiCl4 во время ПЖК-роста с применением жидкостного источника легирующей примеси [Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977, 304 с.]. В основе способа лежит легирование кристаллов фосфором путем введения в определенной пропорции в чистый жидкий SiCl4 галогенида фосфора РСl3, который в рабочем состоянии также является жидкостью. Недостатком данного способа является невозможность обеспечить различный уровень легирования ННК на разных стадиях роста (начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации)), поскольку в нем фиксируется заданное отношение концентрации примеси и основы как в жидкой, так и в газовой фазах независимо от расхода газа-носителя через испаритель, что не дает возможности формирования высокоомных и электрически вырожденных областей ННК на основном, начальном и конечном участках кристалла.

Изобретение направлено на управляемое получение легированных ННК кремния, имеющих повышенный уровень легирования донорной примесью на начальном и конечном участках кристалла (структуры n--n-n-).

Это достигается тем, что при осаждении кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающие из жидкостного источника, выращивание кристаллов на начальной, основной и конечной стадиях роста ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0. В результате центральная часть ННК легируется до n-типа проводимости, а периферийные участки ННК (начальный и конечный) приобретают состояние вырождения и n--тип проводимости. Получается структура с тремя областями проводимости n--n-n-, причем n-область ННК может использоваться как резисторный функциональный элемент, а n--области как площадки для создания омических контактов к данному элементу.

Способ выращивания легированных ННК кремния, имеющих повышенный уровень легирования на начальной и конечной участках кристалла, осуществляется следующим образом. На поверхность ростовой подложки наносят частицы катализатора с последующим помещением ее в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и газофазное легирующее соединение РСl3, поступающие из жидкостного источника. Затем осуществляют выращивание кристаллов на начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации) стадиях. Выращивание ведут последовательно из двух жидкостных источников. Количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0.

Легирование ННК в процессе роста из жидкостного источника определяется тем, что позволяет в широких пределах изменять их удельную проводимость. Количественное значение величины m≥0,01 определяется тем, что при данном уровне легирования на начальной и конечной стадиях роста ННК достигается состояние вырождения (n--проводимость) с концентрацией примеси более 1019 см-3. Количественное значение молярного отношения m=0 на основной стадии роста определяется тем, что при подаче чистого SiCl4, ([РCl3]=0) легирование ННК осуществляется за счет растворения металла катализатора роста кристаллов и обеспечивается наиболее высокое электрическое сопротивление основной области материала ННК (10-3 Ом⋅см и более), являющейся рабочей в различных функциональных устройствах на основе ННК. Использование легирующего соединения PCl3 определяется тем, что фосфор, входящий в состав PCl3, имеет малую подвижность в кремнии (коэффициент диффузии не превышает 10-7 см2/с), что позволяет создавать участки ННК с различным уровнем легирования (n--n-n-), и является мелкой донорной примесью в кремнии, обеспечивающей электронный тип (n--тип) проводимости, поскольку тип проводимости ННК, формирующихся в отсутствие легирующего соединения РСl3 на основной стадии роста, также электронный.

Использование предлагаемого способа позволяет снизить переходные электрические сопротивления при создании электрических контактов к ННК до 0,01 величины от сопротивления основной части кристалла и тем самым существенно облегчить решение проблемы создания омических (с линейными вольт-амперными характеристиками) контактов к ННК и создания наноэлектронных устройств на их базе (чувствительных элементов многофункциональных датчиков, термоэлектрических наноустройств, многоканальных полевых транзисторов с оболочковым затвором, оперативных запоминающих устройств компьютеров высокой плотности информации и др.). При этом в процессе выращивания легированием фиксируются размеры основной рабочей области кристалла, что важно для повторяемости характеристик наноустройств при их серийном изготовлении, а контактные выводы ННК по механической прочности приближаются к прочности используемого для вывода металлического проводника.

Примеры осуществления способа

Пример 1

На поверхность исходной пластины кремния КЭФ (111) на электронно-лучевой установке ВАК-501 напылялась тонкая пленка Ni толщиной 2 нм. Подготовленные подложки разрезались и помещались в ростовую печь. В течение 2-10 минут при температуре 900-1100°С в потоке водорода осуществлялось сплавление Ni с Si и формировались нанокапли расплава Ni-Si. Затем в газовую фазу подавали тетрахлорид кремния SiCl4 и треххлористый фосфор PCl3 из первого источника при молярном соотношении [РСl3]/[SiCl4]=0,01 и выращивали легированные фосфором ННК Si. Время выращивания ННК на начальной стадии составляло 2 минуты. Затем прекращали подачу питающего материала из первого источника и осуществляли подачу SiCl4 из второго источника при m=0 и молярном соотношении [SiCl4]/[H2]=0,008 и выращивали ННК Si на основной стадии в течение 10 минут. Затем прекращали подачу питающего материала из второго источника и возобновляли подачу парогазовой смеси из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,01. Время выращивания ННК на конечной стадии составляло 2 минуты. В результате были получены кристаллы с тремя областями легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=5,5⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=6,8⋅10-4 Ом⋅м, что соответствует концентрации фосфора в кремнии ~1017 см-3 и ~1019 см-3 соответственно.

Пример 2

Выращивание ННК проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалась электролитическая медь. Толщина тонкой пленки меди составляла 2 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=1,8⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=3,2⋅10-4 Ом⋅м.

Пример 3

Выращивание ННК проводилось аналогично примеру 1, но толщина тонкой пленки никеля составляла 20 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=3,28⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=2,81⋅10-4 Ом⋅м.

Пример 4

Выполнение изобретения осуществляли аналогично примеру 1, но в газовую фазу подавали SiCl4 и PCl3 из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,02. Удельное электрическое сопротивление n-области ННК составило ρ=8,3⋅10-3 Ом⋅м, а n--области - ρ=9,1⋅10-5 Ом⋅м.

Пример 5

Выращивание ННК проводилось аналогично примеру 1, но время выращивания на основной стадии роста составляло 20 минут. Полученные результаты соответствовали результатам примера 1.

Способ выращивания легированных нитевидных нанокристаллов кремния, включающий подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl и легирующее соединение РСl, поступающих из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, отличающийся тем, что выращивание кристаллов ведут последовательно из двух жидкостных источников, при этом в первом источнике на начальной стадии роста количественное значение молярного отношения [PCl]/[SiCl]=m выбирают из интервала m≥0,01, а во втором источнике на основной стадии роста количественное значение молярного отношения [PCl]/[SiCl]=m устанавливают как m=0.
Источник поступления информации: Роспатент

Showing 1-10 of 245 items.
20.09.2013
№216.012.6d16

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно, к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат - ускорение процесса синтеза, повышение надежности работы мехатронно-модульных роботов. Предложен способ многоальтернативной оптимизации...
Тип: Изобретение
Номер охранного документа: 0002493577
Дата охранного документа: 20.09.2013
27.01.2014
№216.012.9be3

Способ электрохимического извлечения свинца из свинцово-кислотных отходов аккумуляторных батарей

Изобретение относится к способу извлечения свинца из отходов аккумуляторных батарей. Способ включает электролитическое осаждение свинца из щелочных растворов на асимметричном импульсном токе с варьированием периодической последовательности пакетов положительных n+ и отрицательных n- импульсов...
Тип: Изобретение
Номер охранного документа: 0002505613
Дата охранного документа: 27.01.2014
27.04.2014
№216.012.bdff

Статор ветроэлектрогенератора

Изобретение относится к области ветроэнергетики. Изобретение направлено на увеличение степени использования стоек U-образных магнитопроводов. Статор ветроэлектрогенератора содержит источник магнитного поля, U-образные магнитопроводы, катушки и крепежные элементы, источники возбуждения...
Тип: Изобретение
Номер охранного документа: 0002514379
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.c018

Мехатронно-модульный робот

Изобретение относится к машиностроению, а именно к робототехнике. Технический результат - повешенная эффективная ориентация мехатронно-модульного робота в окружающей среде. Мехатронно-модульный робот состоит, как минимум, из двух сопряженных между собой модулей, сопряжение каждого нового модуля...
Тип: Изобретение
Номер охранного документа: 0002514925
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c16c

Индукторный синхронный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения синхронных генераторов индукторного типа, применяемых, например, в автотракторном оборудовании. В предлагаемом синхронном генераторе, содержащем источник...
Тип: Изобретение
Номер охранного документа: 0002515265
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2a4

Ротор ветроэлектрогенератора

Изобретение относится к области ветроэнергетики. Ротор ветроэлектрогенератора содержит ступицу, лопасти, спицы, обод и ферромагнитные тела, установленные на ободе. Ферромагнитные тела выполнены в виде отрезков труб круглого сечения. Средняя часть отрезков труб имеет выборку, обращенную наружу и...
Тип: Изобретение
Номер охранного документа: 0002515577
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c2b5

Способ локального удаления диэлектрических покрытий

Изобретение относится к области машиностроения и может быть использовано для локального удаления диэлектрических покрытий с металлических деталей, например для обеспечения сварочных, паяльных, клеевых работ, измерения твердости основы, толщины покрытия. Способ включает обработку детали...
Тип: Изобретение
Номер охранного документа: 0002515604
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8ca

Статор ветроэлектроагрегата

Изобретение относится к области электротехники и ветроэнергетики. Предлагаемый статор ветроэлектроагрегата содержит магнитопроводы, систему возбуждения, стяжные элементы и обмотку, при этом согласно изобретению статор выполнен в виде П-образной скобы и пакета пластин, на которых установлены...
Тип: Изобретение
Номер охранного документа: 0002517168
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c8ce

Индукторный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения бесконтактных синхронных генераторов индукторного типа, работающих, преимущественно, на выпрямительную нагрузку и применяемых, например, в...
Тип: Изобретение
Номер охранного документа: 0002517172
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c92f

Устройство тактовой синхронизации для преобразования прерывистой информации в непрерывную

Изобретение относится к области радиотехники и может быть использовано в устройствах передачи непрерывного информационного потока по каналу (сети) пакетной связи. Технический результат - компенсация больших блужданий тактовых импульсов (джиттера). Это достигается увеличением в 2 раз периода...
Тип: Изобретение
Номер охранного документа: 0002517269
Дата охранного документа: 27.05.2014
Showing 1-10 of 289 items.
20.09.2013
№216.012.6d16

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно, к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат - ускорение процесса синтеза, повышение надежности работы мехатронно-модульных роботов. Предложен способ многоальтернативной оптимизации...
Тип: Изобретение
Номер охранного документа: 0002493577
Дата охранного документа: 20.09.2013
27.01.2014
№216.012.9be3

Способ электрохимического извлечения свинца из свинцово-кислотных отходов аккумуляторных батарей

Изобретение относится к способу извлечения свинца из отходов аккумуляторных батарей. Способ включает электролитическое осаждение свинца из щелочных растворов на асимметричном импульсном токе с варьированием периодической последовательности пакетов положительных n+ и отрицательных n- импульсов...
Тип: Изобретение
Номер охранного документа: 0002505613
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9ebe

Наноструктурное покрытие из гранулированного композита

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие из наногранулированного композита «металл-керамика», преимущественно (COFeB)(CaF),...
Тип: Изобретение
Номер охранного документа: 0002506346
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9ebf

Способ повышения износостойкости наноструктурного покрытия из гранулированного композита

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д. Способ повышения износостойкости наноструктурного покрытия из гранулированного композита «металл-керамика»,...
Тип: Изобретение
Номер охранного документа: 0002506347
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2e2

Безредукторный ветроэлектроагрегат

Изобретение относится к области ветроэнергетики и может быть применено для выработки электроэнергии. Безредукторный ветроэлектроагрегат содержит башню, поворотное основание, снабженное ветроколесом с сегментными роторными элементами и установленной в подшипники втулкой, кронштейном со...
Тип: Изобретение
Номер охранного документа: 0002507413
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afa1

Конвекторное кольцо

Изобретение предназначено для отжига в колпаковой печи стопы рулонов холоднокатаной полосовой стали. Конвекторное кольцо содержит расположенные в параллельных плоскостях по окружности с равным шагом под углом к радиальному направлению ребра. Каждое из ребер одной плоскости соединено концевыми...
Тип: Изобретение
Номер охранного документа: 0002510676
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b34d

Способ сравнительной оценки надежности партий полупроводниковых изделий

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов, интегральных схем (ИС) и т.д.) и может быть использовано для сравнительной оценки надежности партий ППИ как в процессе производства, так и при входном...
Тип: Изобретение
Номер охранного документа: 0002511617
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b369

Способ получения наноструктурного покрытия из гранулированного нанокомпозита

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. В способе получения наноструктурного покрытия из гранулированного нанокомпозита «металл-керамика» получают...
Тип: Изобретение
Номер охранного документа: 0002511645
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b408

Способ подогрева криогенной жидкости

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Предложен способ подогрева криогенной жидкости, заключающийся в пропускании жидкости через теплообменные элементы с подведением к ним тепла. Корпус испарителя криогенной...
Тип: Изобретение
Номер охранного документа: 0002511805
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b4b0

Способ сжигания топлива

Изобретение относится к энергетическому, химическому и транспортному машиностроению и может быть использовано в камерах сгорания газотурбинных установок. Предложен способ сжигания топлива, заключающийся в предварительном разделении потока воздуха на коаксиальные кольцевые струи, закрутке...
Тип: Изобретение
Номер охранного документа: 0002511980
Дата охранного документа: 10.04.2014
+ добавить свой РИД