×
20.05.2014
216.012.c5da

СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат. Затем пропитывают спиртовым раствором олигоорганогидридсилоксана, например олигоэтилгидридсилоксана или олигометилгидридсилоксана, выпаривают, сушат на воздухе при температуре не более 200°С не менее 20 мин. После этого прокаливают в инертной среде при температуре 600-800°С не менее 20 мин. Полученные углеродные наноматериалы с нанесенным диоксидом кремния имеют высокую стойкость к окислению. 1 з.п. ф-лы, 4 ил., 6 пр.
Реферат Свернуть Развернуть

Настоящее изобретение относится к области создания новых материалов, а именно к «углеродные наноматериалы - оксид кремния» композиционным материалам.

Среди современных и весьма перспективных материалов важное место занимают углеродные нанотрубки (УНТ) и углеродные нанонити (УНН) или нановолокна. Эти материалы обладают богатым набором уникальных свойств: высокими прочностью и электропроводностью, коррозионной стойкостью, совместимостью с живыми тканями и др. Благодаря этому перспективы использования данных материалов в разных областях достаточно широки.

Однако еще более широкому использованию углеродных наноматериалов мешает их способность окисляться при средних и высоких температурах в окислительной среде. Этот недостаток может быть преодолен посредством защиты УНТ керамической матрицей, которая действует как диффузионный барьер между кислородом и поверхностью углерода.

Известно [1-7], что нанесение тонкой пленки диоксида кремния SiO2 на поверхность углеродных наноматериалов существенно замедляет окисление углерода. Наиболее часто используемый метод нанесения оксида кремния на углеродные наноматериалы включает гидролиз тетраэтоксисилана и нанесение полученного золя на поверхность углеродных материалов. Для нанесения SiO2 на поверхность различных углеродных материалов (сажу, активированный уголь, СИБУНИТ, углеродные нанонити (УНН)) в работе [8] был использован золь-гель метод. Авторы [8] использовали проведение гидролиза тетраэтоксисилана (ТЭС) в кислой (Н2О-HCl) среде. Для получения УНН-SiO2 полученный золь смешивали с углеродным материалом, сушили при комнатной температуре и прокаливали 300°C.

Известен способ нанесения силоксанов на поверхность углеродных нанотрубок, однако такие материалы нельзя использовать при повышенных (>200°C) температурах, т.к. силоксаны интенсивно окисляются, что сопровождается выделением дисперсного оксида кремния в газовую фазу [10]. Предметом изобретения являются аддукты (углеродные нанотрубки и ковалентно-прикрепленные к нанотрубкам силановые компоненты), а также методы их получения. Примеры силановых компонент включают: триметоксисилан; гексафенилдисилан; силилфосфин; 1,1,1,3,5,5,5-гептаметилтрисилоксан; полидиметилсилоксан; поли (N-бромбензол-1,3-дисульфоамид); N,N,N′,N′-тетрабромбензол-1,3-дисульфоамид; гексаметилдисилазан; хлортриметилсилан; трихлорметилсилан; алкил(алкиламино)силан; три(алкокси)силан; трет-бутилдиметилсилан; монохлораминосилан; дихлораминосилан; трихлораминосилан; и диметиламиносилан. Другой аспект известного решения есть метод функционализации углеродных нанотрубок силановыми соединениями. Метод состоит в контактировании дисперсии углеродных нанотрубок с силановыми соединениями для того, чтобы сформировалась смесь прекурсора. Количество весовой части дисперсии углеродных нанотрубок к количеству весовой силановой части предпочтительно составляет от 1:1 до 1:100. Смесь прекурсора после этого облучается. Предпочтительно, облучение осуществляется при температуре окружающей среды. Примеры предпочтительных источников силановой части описано выше. В зависимости от исходных кремнийсодержащих соединений в некоторых реализациях изобретения катализаторы включаются в состав дисперсии углеродных нанотрубок вместе с силановыми соединениями. Предпочтительно, катализаторами являются переходные металлы. Некоторые примеры подходящих катализаторов включают платиновый, родиевый, золотой, кобальтовый и никелевый катализаторы. При реализации изобретения, в котором триметоксисилан выбран как силансодержащее соединение, предпочтительно в качестве катализатора использовать платиновый катализатор, например, H2PtCl6·(H2O)6. Дисперсию углеродных нанотрубок можно подвергнуть действию катализатора перед экспозицией с триметоксисиланом; или дисперсию углеродных нанотрубок можно подвергнуть действию катализатора одновременно со смешением с триметоксисиланом. Предпочтительно, реакция силилирования выполняется в отсутствии воды. Вся дисперсия или часть дисперсии облучается ультрафиолетовым светом при комнатной температуре. Предпочтительная длина волны ультрафиолетового света находится в диапазоне между 200 и 350 нанометров.

В качестве прототипа настоящего изобретения является метод, приведенный в работе [9]. Метод состоял в кислотном гидролизе и поликонденсации тетроэтоксисилана (ТЭС). Для этого смешивали в мольном соотношении ТЭС:С2Н5ОН:H2O=1:2:4. PH раствора поддерживали =1,5-2, за счет добавления нескольких капель HNO3. Полученный раствор перемешивали в течение 4-х суток при температуре 25°C. Затем проводили кислотную обработку УНТ в среде азотной кислоты (1:1) при температуре 25°C в течение 1 ч. УНТ отфильтровывали и сушили при 110°C в течение 24 ч. УНТ после кислотной обработки смешивали с золем SiO2 и перемешивали в течение 24 ч при температуре 25°C. Полученный материал фильтровали и сушили при 110°C в течение 24 ч.

УНТ-SiO2 материал, полученный по прототипу, представляет собой матрицу диоксида кремния SiO2, в которую ввели углеродные нанотрубки. Кроме того, использованный метод включает проведение длительного, в течение нескольких суток гидролиза ТЭС, что делает этот метод нетехнологичным.

Изобретение решает задачу повышения стойкости к окислению углеродных наноматериалов с нанесенным диоксидом кремния - «углеродные наноматериалы - оксид кремния» УНМ-SiO2.

В настоящем изобретении задача решается способом приготовления (УНН-SiO2) или (УНТ-SiO2) материалов, заключающимся в обработке УНН или УНТ в смеси азотной и/или соляной кислоте, предпочтительно, смеси азотной и соляной кислоты («царской водке») при температуре 50-100°C не менее 20 мин, промывке дистиллированной водой и сушке при температуре 100-120°C не менее 20 мин, пропитке УНН или УНТ спиртовым раствором олигоорганогидридсилоксана (ООГС), например олигоэтилгидридсилоксана или олигометилгидридсилоксана и выпаривании раствора.

Предложен способ получения углеродных наноматериалов с нанесенным диоксидом кремния, в котором предварительно исходные углеродные наноматериалы обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°C, промывают водой и сушат, затем пропитывают спиртовым раствором олигоорганогидридсилаксана, например олигоэтилгидридсилоксана или олигометилгидридсилоксана, выпаривают, сушат и прокаливают.

В качестве исходных углеродных наноматериалов используют, например, наноуглеродный компонент со структурой нанотрубки, нанонити или нановолокна. Обрабатывают в смеси азотной и соляной кислоты («царская водка» смесь концентрированных азотной HNO3 (65-68 мас.%) и соляной HCl (32-35 мас.%) кислот, взятых в соотношении 1:3 по объему (массовое соотношение, в пересчете на чистые вещества, около 1:2) при температуре 50-100°C в не менее 20 мин.

УНМ-ОМГС материал сушат на воздухе при температуре не более 200°C в течение не менее 20 мин, а затем прокаливают в инертной среде при температуре 600-800°C не менее 20 мин.

Особенностью строения и состава олигоорганогидридсилоксанов является наличие в молекулах олигомеров реакционно-способных по отношению к различным функциональным группам поверхностей твердых тел связей Si-H. Такие связи, взаимодействуя с функциональными группами поверхности, образуют на ней тонкую пленку силоксана. УНМ-ОМГС материал сушат на воздухе при температуре не более 200°C в течение не менее 20 мин, а затем прокаливают в инертной среде при температуре 600-800°C не менее 20 мин.

Органическая часть ООГС претерпевает деструкцию и удаляется в газовую фазу, оставшийся оксид кремния покрывает поверхность УНМ.

Сущность изобретения иллюстрируется следующими примерами и иллюстрациями.

Пример 1.

10 г углеродных нанотрубок заливают водным раствором (100 мл Н2О) и «царской водки» (40 мл) и подвергают нагреву до температуры 50-100°C и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 мин. Затем УНТ отфильтровывают и промывают дистиллированной воде до нейтрального pH. После кислотной обработки УНТ пропитывают спиртовым раствором олигометилгидридсилоксана (40 мл спирта, 8 мл ОМГС) и выпаривают раствор при нагреве до 90-100°C. УНТ-ОМГС материал сушат на воздухе при температуре 180°C в течение 30 мин, а затем прокаливают в инертной среде при температуре 720°C в течение 40 мин.

Пример 2.

10 г углеродных нанотрубок заливают водным раствором (100 мл H2O) и, «царской водки» (40 мл) и подвергают нагреву до температуры 50-100°C и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 минут. Затем УНТ отфильтровываются и промываются дистиллированной воде до нейтрального pH. После кислотной обработки УНТ пропитывают спиртовым раствором олигометилгидридсилоксана (40 мл спирта, 4 мл ОМГС) и выпаривают раствор при нагреве до 90-100°C. УНТ-ОМГС материал сушат на воздухе при температуре 180°C в течение 30 минут, а затем прокаливают в инертной среде при температуре 720°C в течение 30 мин.

Пример 3.

Аналогичен примеру 1, только УНТ-ОМГС материал сушат на воздухе при температуре 180°C в течение 30 мин, а затем прокаливают в инертной среде при температуре 600°C в течение 30 мин.

Пример 4.

Аналогичен примеру 1, только материал УНТ-ОМГС сушат на воздухе при температуре 180°C в течение 30 Мин, а затем прокаливают в инертной среде при температуре 800°C в течение 30 мин.

Пример 5.

Аналогичен примеру 1, только в качестве источника оксида кремния используют олигоэтилгидридсилоксан.

Пример 6.

10 г углеродных нанонитей или нановолокон заливают водным раствором (100 мл H2O) и «царской водки» (40 мл) и подвергают нагреву до температуры 50-100°C и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 мин. Затем УНН отфильтровываются и промываются дистиллированной воде до нейтрального pH. После кислотной обработки УНН пропитывают спиртовым раствором олигометилгидридсилоксана (40 мл спирта, 8 мл ОМГС) и выпаривают раствор при нагреве до 90-100°C. Материал УНН-ОМГС сушат на воздухе при температуре 180°C в течение 30 мин, а затем прокаливают в инертной среде при температуре 720°C в течение 30 мин.

Для подтверждения свойств полученных углеродных наноматериалов с нанесенным диоксидом кремния на Фиг.1-4 приведены кинетические кривые по окислению исходных углеродных наноматериалов и кривые по окислению полученных углеродных материалов с нанесенным диоксидом кремния в кислородно-аргоновой среде.

Из приведенных Фиг.1-4 видно, что нанесение оксида кремния оказывает влияние на стойкость УНМ к окислению в кислородно-аргоновой смеси. Установлено, что скорость окисления УНМ-SiO2 материала уменьшается примерно на порядок по сравнению с исходными УНМ, не имеющими покрытия SiO2.

На Фиг.1 представлены кинетические кривые окисления исходных УНН (1) и УНН-15%SiO2 материала (2) в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре Т=600°C.

При повышении температуры до 700°C увеличивается скорость окисления как исходных УНН, так УНН-15%SiO2 иатериала (Фиг.2). Однако соотношение скоростей окисления сохраняется. УНН-15%SiO2 материал окисляется более медленно, чем исходные УНН.

На Фиг.2 представлены кинетические кривые окисления исходных УНН (1) и УНН-15%SiO2 материала (2) в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре Т=700°C.

Аналогичные результаты получены для УНТ (Фиг.3).

На Фиг.3 представлены кинетические кривые окисления исходных УНТ (1), УНТ-10 мас.% SiO2 (2) и УНТ-13 мас.% SiO2 (3) материалов в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре 600°C.

На Фиг.4 приведено сравнение кинетических кривых окисления УНТ-13 мас.% SiO2 материала, приготовленного через ОМГС (1), и УНТ-13 мас.% SiO2 материала, приготовленного по прототипу (2), в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре 600°C.

Нанесение тонкой пленки оксида кремния на поверхность углеродных нанотрубок приводит к повышению их стабильности к окислению. Увеличение концентрации нанесенного оксида кремния приводит к уменьшению скорости окисления (см. Фиг.3, кривые 1 и 2).

СПИСОК ЛИТЕРАТУРЫ

1. Yang Y., Qiu S., Cui W., Zhao Q., Cheng X., Li R.K.Y., Xie X., Mai Y. - W., A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates, J. Mater. Sci., 2009, 44, pp.4539-4545.

2. Balazsi C., Konya Z., Weber F., Biro L.P., Arato P., Preparation and characterization of carbon nanotube reinforced silicon nitride composites, Mat. Sci. Eng. C-Bio. S., 2003, 23, pp.1133-1137.

3. Wang J., Kou H., Liu X., Pan Y., Guo J., Reinforcement of mullite matrix with multi-walled carbon nanotubes, Ceram. Int. 2007, 33, pp.719-722.

4. Ning J., Zhang J., Pan Y., Guo J., Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube, Mat. Sci. Eng. A-Struct., 2003, 357, pp.392-396.

5. Xiang C.S., Shi X.M., Pan Y.B., Guo J.K., Fabrication and dielectric properties of CNTs/SiO2 composites, Key Eng. Mater., 2005, 280/283, pp.123-127.

6. Ning J.W., Zhang J.J., Pan Y.B., Guo J.K., Surfactants assisted processing of nanotube-reinforced SiO2 matrix composites, Ceram. Int., 2004, 30, pp.63-67.

7. Guo J.K., Ning J.W., Pan Y.B., Fabrication and properties of carbon nanotube/SiO2 composites, Key Eng. Mater., 2003, 249, pp.1-4.

8. Ermakova M.A., Ermakov D.Yu., Kuvshinov G.G., Fenelonov V.B. and Salanov A.N.,

Synthesis of high surface area silica gels using porous carbon matrices J. Porous Materials 2000, 7, pp.435-441.

9. Barrena M.I., Gomez de Salazar J.M., Soria A., Matesanz L., Pre-hydrolysed ethyl silicate as an alternative precursor for SiO2-coated carbon nanofibers. Applied Surface Science, 2011, 258, pp.1212-1216.

10. Патент US 7833504, C01B 33/04, C07F 7/08, 2010.11.16.


СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 112 items.
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c32

Способ прямой конверсии низших парафинов c-c в оксигенаты

Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения...
Тип: Изобретение
Номер охранного документа: 0002485088
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eea

Способ получения диоксида титана

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов....
Тип: Изобретение
Номер охранного документа: 0002494045
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
Showing 1-10 of 138 items.
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c32

Способ прямой конверсии низших парафинов c-c в оксигенаты

Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения...
Тип: Изобретение
Номер охранного документа: 0002485088
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eea

Способ получения диоксида титана

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов....
Тип: Изобретение
Номер охранного документа: 0002494045
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
+ добавить свой РИД