×
10.02.2014
216.012.9e5a

СПОСОБ ПОЛУЧЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЦЕРИЯ И ЦЕРАТА БАРИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава 0,3BaCeGdO-0,7CeGdO, синтезированных методом твердофазного синтеза или методом сжигания нитратов и лимонной кислоты. Перед спеканием в порошки добавляют 1 мол.% BaCuOчто обеспечивает в процессе обжига образование жидкой фазы купрата бария и быстрое спекание и уплотнение керамики при пониженных температурах. Технический результат: снижение температуры спекания и времени выдержки порошков и связанных с этим энергозатрат без ухудшения электрических свойств получаемой керамики. 1 ил., 1 табл.
Основные результаты: Способ получения газоплотной керамики на основе оксида церия и церата бария, включающий спекание порошков состава 0,3BaCeGdO-0,7CeGdO, отличающийся тем, что перед спеканием в порошки добавляют 1 мол.% BaCuO, при этом спекают порошки, синтезированные методом сжигания нитратов и лимонной кислоты или методом твердофазного синтеза.
Реферат Свернуть Развернуть

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной (соионной) кислород-ионной и протонной проводимостью и может быть использовано при разработке материалов для средне- и высокотемпературных твердооксидных топливных элементов и других электрохимических устройств.

Известен способ получения газоплотной керамики на основе оксида церия и церата бария, согласно которому синтезированные твердофазным методом порошки состава 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ (7SDC-3BCS) спекают при температуре 1550°С в течение 10 часов (A.Venkatasubramanian, Р.Gopalan, T.R.S.Prassana. Synthesis and characterization of electrolytes based on BaO-CeO2-GdO1.5 system for intermediate temperature solid oxide fuel cells. Int. J.Hydrogen Energy. 35 (2010), p.4597) [l]. Для равномерного распределения фаз в объеме композита и получения керамики с высокой плотностью в известном решении используют высокую температуру спекания и длительную выдержку порошков, что приводит к высоким энергозатратам. Кроме того, данный способ ограничен использованием исходных порошков, синтезированных твердофазным методом.

Более низкую температуру спекания имеет способ получения газоплотной керамики на основе оксида церия и церата бария (М.Khandelwal, A.Venkatasubramanian, T.R.S.Prassana, P.Gopalan. Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate. J.Eur. Ceram. Soc. 31 (2011), p.559) [2], который принят в качестве прототипа к заявленному изобретению. Согласно данному способу при 1450°С в течение 10 часов спекают порошки состава 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ, полученные методом сжигания нитратов и лимонной кислоты, в результате чего достигается высокая гомогенность, что обеспечивает равномерное распределение фаз в объеме композита. Это свойство обеспечивает формирование керамики с высокой плотностью при температуре спекания до 1450°С, тем не менее, данный способ требует длительной температурной выдержки порошков, что отрицательно сказывается на его энергозатратности, притом, что снижение температуры спекания материала обусловлено использованием исходных порошков, синтезированных методом сжигания нитратов и лимонной кислоты.

Задача настоящего изобретения состоит в разработке способа получения газоплотной керамики на основе оксида церия и церата бария при снижении энергозатрат и расширении выбора базы исходных порошков.

Для решения поставленной задачи способ получения газоплотной керамики на основе оксида церия и церата бария включает спекание порошков состава 0.3BaCe0.8Gd0.2O3-δ-0.7Ce0.8Gd0.2O2-δ, в которые перед спеканием добавляют 1 мол.% Ba2CuO3, при этом спекают порошки, синтезированные методом сжигания нитратов и лимонной кислоты или методом твердофазного синтеза.

Композитная керамика на основе оксида церия и церата бария является двухфазной, при этом получение равномерного распределения фаз в объеме композита и высокой плотности получаемой керамики требует высоких температур спекания (1450-1550°С) и длительной температурной выдержки, как в известных способах [1, 2]. В заявляемом способе перед спеканием в порошки состава 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ добавляют 1 мол.% Ba2CuO3. Это приводит к образованию в процессе спекания как твердой, так и жидкой фазы купрата бария, что способствует быстрому спеканию кристаллитов и, соответственно, уплотнению керамики при пониженных температурах. Так, время выдержки материала при спекании уменьшается с 10 до 3 часов. При этом температуры обжига порошка 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ с добавкой 1 мол.% Ba2CuO3 составляют 1350°С при использовании порошков, синтезированных методом сжигания нитратов, и 1400°С - при использовании порошков, синтезированных методом твердофазного синтеза. Таким образом, исходные порошки, синтезированные как методом сжигания нитратов, так и методом твердофазного синтеза с добавкой 1 мол.% Ba2CuO3, спекают при более низкой температуре, что связано с повышенной реакционной активностью мелкодисперсных частиц этих порошков.

Экспериментально установлено, что указанные температуры достаточны для формирования газоплотного композитного материала и полного испарения фазы Ba2CuO3. Также установлено, что введение большего количества Ba2CuO3 нецелесообразно, поскольку не приводит к дальнейшему увеличению плотности керамики при пониженных температурах. Меньшее количество добавки не обеспечивает активного спекания кристаллитов при получении композитной керамики и, соответственно, сокращения времени спекания порошков.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры спекания и времени выдержки исходных порошков, синтезированных методом сжигания нитратов и лимонной кислоты или методом твердофазного синтеза при достижении высокой газоплотности керамики на основе оксида церия и церата бария без ухудшения ее электрических свойств.

Предлагаемый способ иллюстрируется следующим. На рисунке представлены рентгенограммы полученного заявленным способом образца керамики 0,3BaCe0.8Gd0.2O3-δ-0.7Ce0.8Gd0.2O2-δ (7SDC-3BCS) и образцов-эталонов (BaCe0.8Gd0.2O3-δ-0.7Ce0.8Gd0.2O2-δ): 1 - композит 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ, 2 - Ce0.8Gd0.2O2-δ, 3 - BaCe0.8Gd0.2O3-δ. В таблице приведены режимы осуществления заявленного способа и способов [1], [2], а также результаты измерения электропроводности полученных материалов при 800°С на воздухе.

Пример 1.

Композитный материал получали одностадийно известным твердофазным методом из прекурсоров BaCO3, CeO2, Gd2O3, которые смешивали в стехиометрических соотношениях, перетирали в агатовой ступке в течение 40 мин в среде этилового спирта и синтезировали. Синтез осуществлялся путем нагрева от комнатной температуры до 1150°С при скорости нагрева 300°С/час, выдерживали в течение 3 часов и охлаждали до комнатной температуры со скоростью охлаждения 300°С7 час. К синтезированному порошку добавляли купрат меди Ba2CuO3 в количестве 1 мол.%, полученную смесь всухую растирали в агатовой ступке в течение 40 мин и формовали таблетки путем гидростатического прессования с давлением прессования 170 кгс/см2. Прессованные таблетки спекали при 1400°С в течение 3 часов со скоростью нагрева и охлаждения 300°С/час.

Пример 2.

Композитный материал получали известным методом сжигания нитратов и лимонной кислоты из прекурсоров Ba(NO3)2, Ce(NO3)3·6H2O, Gd(NO3)3·6H2O и C6H8O7. Нитраты исходных металлов и лимонную кислоту брали в стехиометрически рассчитанных количествах, растворяли в дистиллированной воде и поэтапно нагревали в сушильном шкафу до 120°С в течение 2 часов с целью удаления воды и до 250°С без изотермической выдержки с целью разложения органометаллического комплекса и получения продуктов реакции. Полученный порошкообразный пепел растирали в агатовой ступке в течение 40 мин и синтезировали при 1050°С в течение 3 часов со скоростью нагрева и охлаждения 300°С/час. К синтезированным порошкам добавляли купрат меди Ba2CuO3 в количестве 1 мол.%, полученную смесь всухую растирали в агатовой ступке в течение 40 мин и формовали таблетки путем гидростатического прессования с давлением прессования 170 кгс/см2. Прессованные таблетки спекали при 1350°С в течение 3 часов со скоростью нагрева и охлаждения 300°С/час.

Рентгенофазовый анализ (РФА) показал, что заявленным способом получена керамика состава 0,3BaCe0.8Gd0.2O3-δ-0,7Ce0.8Gd0.2O2-δ, состоящая только из перовскитной (пространственная группа Pmcn) и флюоритной (Fm3m) фаз. Согласно РФА, спеченные материалы не содержат Cu-содержащих веществ, что свидетельствует об их полном испарении. Результаты гидростатического взвешивания спеченных материалов свидетельствуют о получении газоплотной керамики: ее относительная плотность составляет 96% от теоретической. Электропроводность образцов полученной керамики измеряли 4-зондовым методом на постоянном токе при температуре 800°С на воздухе. Результаты измерений, приведенные в таблице, свидетельствуют о том, что электропроводность образцов полученных заявленным способом, сопоставимы с данными проводимости для того же материала, полученного способами [1] и [2].

Таким образом, заявленное изобретение позволяет получить газоплотную керамику на основе оксида церия и церата бария при снижении энергозатрат и расширении выбора базы исходных порошков.

Способ получения газоплотной керамики на основе оксида церия и церата бария

Таблица
Температура спекания в способах [1], [2], °С Время спекания в способах [1], [2], ч Электропроводность керамики при 800°С на воздухе, См·см-1 N п/п Температура спекания в заявляемом способе, °С Время спекания в заявляемом способе, ч Электропроводность керамики при 800°С на воздухе, См·см-1
Твердофазный синтез
1550 10 1,5·10-2 1 1400 3 2,23·10-2
Метод сжигания нитратов и лимонной кислоты
1450 10 2.6·10-2 2 1350 3 2,68·10-2

Способ получения газоплотной керамики на основе оксида церия и церата бария, включающий спекание порошков состава 0,3BaCeGdO-0,7CeGdO, отличающийся тем, что перед спеканием в порошки добавляют 1 мол.% BaCuO, при этом спекают порошки, синтезированные методом сжигания нитратов и лимонной кислоты или методом твердофазного синтеза.
СПОСОБ ПОЛУЧЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЦЕРИЯ И ЦЕРАТА БАРИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 102 items.
10.02.2013
№216.012.24d3

Электрохимический генератор на твердооксидных топливных элементах

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ). Электрохимический генератор на твердооксидных топливных элементах содержит корпус, камеру смешения метана и воздуха, камеру...
Тип: Изобретение
Номер охранного документа: 0002474929
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.338a

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом...
Тип: Изобретение
Номер охранного документа: 0002478737
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.4539

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях содержит диск из твердого электролита с кислородной проводимостью,...
Тип: Изобретение
Номер охранного документа: 0002483298
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453a

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях содержит два электрода, нанесенные на противоположные поверхности одного из...
Тип: Изобретение
Номер охранного документа: 0002483299
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453b

Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей содержит диск из твердого электролита с кислородной проводимостью с двумя электродами - наружным и внутренним,...
Тип: Изобретение
Номер охранного документа: 0002483300
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5e1a

Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах

Изобретение относится к аналитической технике, в частности к датчикам, предназначенным для анализа газовых сред и металлических расплавов на кислородосодержание. Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах содержит выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002489711
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.619f

Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды,...
Тип: Изобретение
Номер охранного документа: 0002490623
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
Showing 1-10 of 71 items.
10.02.2013
№216.012.24d3

Электрохимический генератор на твердооксидных топливных элементах

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ). Электрохимический генератор на твердооксидных топливных элементах содержит корпус, камеру смешения метана и воздуха, камеру...
Тип: Изобретение
Номер охранного документа: 0002474929
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.338a

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом...
Тип: Изобретение
Номер охранного документа: 0002478737
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.4539

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях содержит диск из твердого электролита с кислородной проводимостью,...
Тип: Изобретение
Номер охранного документа: 0002483298
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453a

Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях содержит два электрода, нанесенные на противоположные поверхности одного из...
Тип: Изобретение
Номер охранного документа: 0002483299
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.453b

Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей содержит диск из твердого электролита с кислородной проводимостью с двумя электродами - наружным и внутренним,...
Тип: Изобретение
Номер охранного документа: 0002483300
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5e1a

Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах

Изобретение относится к аналитической технике, в частности к датчикам, предназначенным для анализа газовых сред и металлических расплавов на кислородосодержание. Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах содержит выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002489711
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.619f

Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды,...
Тип: Изобретение
Номер охранного документа: 0002490623
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
+ добавить свой РИД