×
27.01.2014
216.012.9c8a

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ И НАПРЯЖЕНИЙ В ХРУПКИХ ТЕНЗОИНДИКАТОРАХ

Вид РИД

Изобретение

Аннотация: Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки. Технический результат: обеспечение возможности диагностики предельного состояния и раннего предупреждения об опасности разрушения конструкций в процессе их технической эксплуатации, а также оценки прочности, выявления дефектов и зон действия максимальных напряжений в условиях стендовых и натурных испытаний образцов и деталей. 4 ил.
Основные результаты: Способ регистрации трещин в хрупких тензоиндикаторах, включающий проведение акустико-эмиссионнных измерений сигналов образования трещин в хрупком тензопокрытии, отличающийся тем, что дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки.

Изобретение относится к устройствам неразрушающего контроля материалов и изделий по условиям прочности и предназначено для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня нагруженности в исследуемых зонах конструкции.

Известен способ исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений, с помощью хрупко-акустического метода, предусматривающий проведение следующих действий: нанесение хрупкого тензочувстительного покрытия на исследуемую поверхность детали, отверждение покрытия /RU 2345324 С1, МПК G01N 29/14, опубл. 2009/.

К недостаткам известного способа можно отнести следующее. Акустико-эмиссионнная система реагирует не только на сигналы образования трещин в хрупком тензопокрытии, но и на сигналы, вызванные структурной перестройкой материала конструкции в зонах пластической деформации, возникновением микротрещин, их слиянием, образованием макротрещины, ее развитием, а также различного рода помехам, возникающими при испытаниях.

Задачей, на решение которой направлено заявляемое техническое решение, является разработка способа для диагностики предельного состояния и раннего предупреждения об опасности разрушения конструкций в процессе их технической эксплуатации, а также оценки прочности, выявления дефектов и зон действия максимальных напряжений в условиях стендовых и натурных испытаний образцов и деталей.

При осуществлении технического решения поставленная задача решается за счет достижения технического результата, который заключается в счетной концентрации аэрозолей в приповерхностном слое, позволяющей регистрировать процессы структурной перестройки материала задолго до начала разрушения конструкции.

Указанный технический результат достигается тем, что в способе регистрации трещин в хрупких тензоиндикаторах, включающим проведение акустико-эмиссионнных измерений сигналов образования трещин в хрупком тензопокрытии, особенностью является то, что дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30 секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленке тензоиндикатора и материала подложки.

Любые значительные изменения напряженно-деформированного состояния элементов конструкций, связанные со структурной перестройкой материала (пластическая деформация, образование и рост трещин), сопровождаются повышением концентрации аэрозолей в приповерхностном слое. Поскольку оптические анализаторы позволяют измерять не только счетную концентрацию, но и дисперсный состав аэрозолей, возникает возможность проанализировать изменение функции распределения микрочастиц f(Ω) по размерам в ходе мониторинга развивающегося процесса разрушения диагностируемого объекта.

Способ иллюстрируется материалами, где на фиг.1 приведена диаграмма нагружения тестового образца №01, построенная в координатах нагрузка (Р) - время (τ), на фиг.2 - графики изменения счетной концентрации микрочастиц, зарегистрированные на циклах нагружения образца №01 с применением лазерного счетчика аэрозольных частиц Lighthouse Handheld 3106, на фиг.3 приведена диаграмма нагружения тестового образца №02, построенная в координатах нагрузка (Р) - время (τ), на фиг.4 приведены графики изменения счетной концентрации микрочастиц размерных рядов 0,3-0,5 мкм, 0,5-1,0 мкм и 1,0-3,0 мкм, зарегистрированные на циклах нагружения образца №02 с применением лазерного счетчика Lighthouse Handheld 3106.

Для осуществления заявляемого способа использовали комплексную систему, включающую лазерный счетчика аэрозольных частиц Lighthouse Handheld 3106 и преобразователи акустической эмиссии (ПАЭ) с системой А-Line 32D состояния хрупких оксидных тензоиндикаторов и материала подложки при испытаниях образцов из высокопрочного алюминиевого сплава В95 на разрыв.

Лазерный счетчик аэрозольных частиц Lighthouse Handheld 3106, с большой точностью определяет концентрацию микрочастиц с диаметром от 0,3 до 10 мкм в пространстве приемной камеры. Насос пробоотборника со скоростью 2,83 л/мин забирает из приемной камеры, герметично закрепляемой на диагностируемом объекте, пробу воздуха объемом 1,416 л. Для определения численности взвешенных частиц в приборе используется лазерный источник света и фокусирующая оптическая система. Частицы, проходя через луч лазерного излучателя, рассеивают его, а фокусирующая оптическая система направляет свет на фотодиод, который преобразует рассеиваемый частицами свет в электрические импульсы. По величине импульса определяется размер частицы. Импульсы подсчитываются, а их амплитуда служит характеристикой размеров частиц. Результаты измерений показывают количество частиц в канале, соответствующих определенному размерному ряду.

Образование трещин в хрупких тензопокрытиях имеет «взрывной характер» и охватывает процессы передачи и диссипации энергии, не только в покрытии и подложке, но и в окружающей среде. Высвобождаемая в процессе трещинообразования тензопокрытия энергия упругой деформации генерирует волны акустической эмиссии и выброс микрочастиц покрытия в сопредельное пространство.

Длительность акустической волны, вызываемой образованием трещины в оксидном тензоиндикаторе, не превышает 10 мс. Следовательно, активный выброс микрочастиц оксидной пленки, включающих твердую и жидкую (гелеобразную) фазу, должен происходить в этот же период времени. Выброшенные микрочастицы попадают в сопредельный с тензопокрытием приповерхностный слой, толщина которого по данным проведенных исследований не более чем на два порядка превышает толщину разрушившейся оксидной пленки, т.е. составляет примерно 2-3 мм. Затем подхватываемые струей воздуха приточной вентиляцией, откачиваемой насосом пробы, они достигают рабочей камеры счетчика. Длительность процесса забора пробы воздуха и определения концентрации микрочастиц с применением счетчика Lighthouse Handheld 3106 составляет от 15 до 30 секунд. Следовательно, фактически регистрация образования трещины в оксидной пленки тензоиндикатора с применением лазерного счетчика аэрозолей, может происходить с задержкой относительно реального события более чем на 30 секунд. Если испытания образцов проводить с малой скоростью изменения нагрузки, эту задержку возможно контролировать, и установить определенное соответствие между численностью сигналов АЭ и концентрацией аэрозолей, регистрируемых при разрушении тензоиндикатора и материала подложки.

Эксперименты по замеру генерации аэрозолей с применением счетчика частиц Lighthouse Handheld 3106 при нагружении образцов с оксидными тензоиндикаторами на стенде MTS проводились в ходе трех этапов испытаний. При этом было испытано шесть образцов с различной толщиной оксидной пленки и уровнем пороговой деформации тензоиндикаторов.

На первом этапе испытаний исследовались два образца из сплава В95 с наклеенными оксидными тензоиндикаторами. Эксперимент был тестовый, и образцы имели обозначения №01 и №02. Для оценки границ возможного применения метода аэрозолей при использовании тензоиндикаторов в рабочем диапазоне чувствительностей от 500 до 2000-2500 мкм/м предполагалось в тестовых экспериментах получить тензоиндикаторы с минимальной и максимальной величиной пороговой деформации. Поэтому при их изготовлении были выбраны режимы электрохимического анодирования, обеспечивающие получение максимальной и минимальной чувствительности к деформациям. При этом толщина оксидной пленки тензоиндикатора на образце №01 могла составлять 30÷35 мкм, а на образце №02 - 10÷15 мкм.

Испытания образцов на стенде MTS выполнялось в ручном режиме в несколько циклов нагружения. Перед установкой образца на стенд на поверхность тензоиндикатора герметично крепилась приемная камера, позволяющая регистрировать выбросы микрочастиц при образовании трещин в оксидной пленке в процессе нагружения. Преобразователи акустической эмиссии закреплялись через слой смазки на противоположенной стороне образца. Так как визуальному наблюдению за процессом образования трещин в оксидном тензоиндикаторе мешала приемная камера, то регистрация трещин осуществлялась по сигналам акустической эмиссии с применением резонансных ПАЭ R 151 и GT 205. Эти преобразователи имели резонансные частоты 150 и 50 кГц, а полосы пропускания 70-200 кГц и 40-100 кГц соответственно.

Как следует из диаграммы (см. фиг.1), на первом цикле максимальная нагрузка достигала 10 кН, на втором - 10 кН, на третьем - 12 кН.

При испытаниях этого образца первые сигналы образования трещин в оксидной пленке тензоиндикатора были зарегистрированы ПАЭ при уровне нагрузке Р=3,9-4 кН. Так как площадь поперечного сечения в зоне действия максимальных напряжений равнялась 80 мм2, то значение порогового напряжение и пороговой деформации тензоиндикатора на образце №01 можно оценить величинами: σo=P/F=50 МПа, εoo/E=700 мкм/м. Таким образом, тензочувствительность оксидной пленки была несколько выше прогнозируемой (500 мкм/м), согласно графику фиг.5, толщина оксидной пленке тензоиндикатора на образце №01 примерно составляла 33 мкм.

На первом цикле нагружения по данным ПАЭ активное трещинообразование в оксидной пленке тензоиндикатора регистрировалось при повышении нагрузки свыше 4 кН и продолжалось до достижения максимального уровня Р=10 кН.

На втором цикле нагружения, который был близок к первому, как по скорости нагружения, так и уровню нагрузки, сигналы акустической эмиссии практически не регистрировались, т.е. образования новых трещин в оксидной пленке тензоиндикатора не происходило.

На третьем цикле нагружения активизация сигналов АЭ наблюдалась при повышении нагрузки свыше 10 кН и их регистрация продолжалась до достижения максимального уровня Р=12 кН. При этом величина максимальных растягивающих напряжений в подложке в три раза превышала пороговое значение σo=50 МПа тензоиндикатора, а численность трещин в оксидной пленке согласно графику рис.1.11 достигала ψ=50 тр./см. Всего на этом цикле нагружения ПАЭ зарегистрировали более 1000 сигналов. Во избежание разрушения тензоиндикатора и нарушения его целостности, необходимой для подсчета трещин в оксидной пленке и сопоставления с количеством сигналов акустической эмиссии, дальнейшее нагружение образца было прекращено.

Графики изменения счетной концентрации микрочастиц, зарегистрированные на циклах нагружения образца №01 с применением лазерного счетчика аэрозольных частиц Lighthouse Handheld 3106, приведены на фиг.2. Как следует из графика, на всех циклах нагружения с повышением нагрузки происходило увеличение концентрации микрочастиц всех контролируемых размерных рядов примерно в 1,5-2,0 раза. При этом наибольшая концентрация наблюдалась микрочастиц с размером 0,3-0,5 мкм. Существенный рост концентрации микрочастиц был заметен даже на втором цикле нагружения, когда образование новых трещин не должно было происходить. Такой эффект вероятно связан с задержкой регистрации концентрации аэрозолей в приемной камере, о чем говорилось выше. Во всех проведенных экспериментах с тензоиндикаторами наблюдалась следующая тенденция, чем меньше размерный ряд контролируемых микрочастиц, тем большая концентрация их отмечалась при трещинообразовании оксидной пленки.

Как следует из диаграммы нагружения образца №02 (см. фиг.3), на первом цикле максимальная нагрузка достигала 10 кН, на втором - 12 кН, на третьем - 12 кН. При испытаниях этого образца первые сигналы образования трещин в оксидной пленке тензоиндикатора были зарегистрированы ПАЭ только на втором цикле нагружения при уровне нагрузки Р=11,5-12 кН. Таким образом, значения порогового напряжения и пороговой деформации тензоиндикатора на образце №02 достигали: σo=P/F=150 МПа, εoo/Е=2000 мкм/м, что точно совпадало с прогнозируемой величиной тензочувствительности. Как следует из графика (фиг.3) изменения концентрации аэрозолей на циклах нагружения образца №02 при его испытаниях на растяжение существенное увеличение концентрации микрочастиц всех размерных рядов примерно в 2,5-3 раза наблюдалось лишь на третьем цикле нагружения после повышения нагрузки до максимального уровня Р=12 кН. Причем концентрация частиц оставалась достаточно высокой в течение 30-60 секунд даже после снятия нагрузки. Следует отметить, что по данным ПАЭ активная регистрация сигналов образования трещин в тензоиндикаторе наблюдалась лишь на втором цикле нагружения при повышении нагрузки до 11,5-12,0 кН. На третьем цикле нагружения регистрация сигналов акустической эмиссии практически отсутствовала. Это связано со значительной задержкой регистрации выбросов микрочастиц, происходящих в приемной камере. При испытаниях образца наблюдался подсос неочищенного воздуха, о чем свидетельствовал высокий начальный фон концентрации аэрозолей, достигавший 2000-3000 единиц.

Как следует из графиков, на всех циклах нагружения при выходе на режим максимальной нагрузки происходило существенное увеличение концентрации микрочастиц всех контролируемых размерных рядов. При этом наибольшую концентрацию практически до момента разрушения образца имели микрочастицы размерного ряда 0,3-0,5 мкм. Причем, если максимальная активность сигналов АЭ наблюдалась в процессе роста нагрузки, то пиковые концентрации микрочастиц были зарегистрированы уже после выхода на заданный уровень. Таким образом, на всех циклах нагружения прослеживается отставание процесса регистрации выбросов микрочастиц с применением лазерного счетчика от регистрации сигналов АЭ. Величина этого отставания в процессе эксперимента составляла не менее 30 секунд. Наиболее значительное расхождение наблюдалось перед предпоследним циклом. Образец был разгружен, но при этом была зарегистрирована пиковая концентрация микрочастиц с размером 0,3-0,5 мкм. При последующем повышении нагрузки наблюдалось снижение концентрации микрочастиц, которая достигла минимума при максимальном уровне нагрузки в предпоследнем цикле. Последующая разгрузка образца, вызвала новое пиковое повышение концентрации частиц в контролируемом пространстве. На этом этапе испытания образца сдвиг между процессами регистрации пиковых концентраций микрочастиц и регистрации активности сигналов АЭ был максимален и составлял полцикла нагружения.

Как показали результаты проведенных экспериментов, между реальным событием выброса микрочастиц, происходящим при разрушении тензоиндикатора и материала подложки, и их регистрацией с применением программы обработки результатов счетчиком аэрозолей Lighthouse Handheld 3106 имеет место задержка от 30 секунд.

Если скорость изменения нагрузки при испытаниях не велика и не превышает 0,1 кН/с, то с учетом 30 секундной поправки на задержку регистрации, можно достаточно точно диагностировать процесс разрушения оксидной пленке тензоиндикатора и материала подложки с применением лазерного счетчика аэрозолей Lighthouse Handheld 3106

Способ регистрации трещин в хрупких тензоиндикаторах, включающий проведение акустико-эмиссионнных измерений сигналов образования трещин в хрупком тензопокрытии, отличающийся тем, что дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки.
СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ И НАПРЯЖЕНИЙ В ХРУПКИХ ТЕНЗОИНДИКАТОРАХ
СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ И НАПРЯЖЕНИЙ В ХРУПКИХ ТЕНЗОИНДИКАТОРАХ
СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ И НАПРЯЖЕНИЙ В ХРУПКИХ ТЕНЗОИНДИКАТОРАХ
СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ И НАПРЯЖЕНИЙ В ХРУПКИХ ТЕНЗОИНДИКАТОРАХ
Источник поступления информации: Роспатент

Showing 91-99 of 99 items.
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.08.2016
№216.015.5039

Устройство изменения радиуса кривошипа кривошипно-шатунного механизма

Предлагаемое устройство относится к машиностроению, в частности к поршневым машинам. Кривошипно-шатунный механизм, содержащий коленчатый вал, состоящий из коренных и шатунных шеек, соединенных щеками кривошипов, отличается тем, что щеки кривошипов имеют направляющие пазы, в которых установлены...
Тип: Изобретение
Номер охранного документа: 0002595993
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50ab

Механобиологический способ диагностики материалов и конструкций

Изобретение относится к области неразрушающего контроля материалов и изделий по условиям прочности и предназначено для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня напряженности в исследуемых зонах конструкции. Механобиологический способ исследования...
Тип: Изобретение
Номер охранного документа: 0002595876
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6bf7

Хрупкое покрытие для исследования деформаций и напряжений

Изобретение относится к определению напряженно-деформированного состояния металлических конструкций высокорисковых объектов нефтяной, газовой и химической отраслей промышленности, систем транспорта и переработки нефти и газа с помощью тензочувствительных хрупких покрытий, что позволяет получить...
Тип: Изобретение
Номер охранного документа: 0002592889
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.8ba4

Информационно-управляющий комплекс автоматизированной системы управления подготовкой двигательных установок и технологическим оборудованием ракет космического назначения на техническом и стартовом комплексах

Информационно-управляющий комплекс автоматизированной системы управления (ИУК АСУ) подготовкой двигательных установок (ПДУ) и технологическим оборудованием (ТО) ракет космического назначения (РКН) на техническом и стартовом комплексах (ТК И СК) содержит автоматизированные рабочие места...
Тип: Изобретение
Номер охранного документа: 0002604362
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9872

Способ исследования деформаций и напряжений с помощью газоанализатора

Использование: для исследования деформаций и напряжений в конструкциях опасных производственных объектов газо-, нефтехимической промышленности. Сущность: заключается в том, что наносят на поверхность детали хрупкое тензочувствительное пористое покрытие с фреоном, осуществляют отверждение...
Тип: Изобретение
Номер охранного документа: 0002609185
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.a9d2

Комбинированный способ исследования деформаций и напряжений

Изобретение относится к технике для исследования деформаций и напряжений в конструкциях опасных производственных объектов газо- и нефтехимической промышленности. Сущность: наносят на поверхность детали хрупкое тензочувствительное пористое покрытие с фреоном, осуществляют отверждение покрытия,...
Тип: Изобретение
Номер охранного документа: 0002611597
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ab7a

Трансформируемый кузов наземной транспортной системы

Изобретение относится к транспортной технике. Трансформируемый кузов наземной транспортной системы содержит установленный на грузовой платформе (1), расположенной между колесными тележками (2), трансформируемый кузов (3), состоящий из наружного корпуса (4), внутри которого установлен средний...
Тип: Изобретение
Номер охранного документа: 0002612341
Дата охранного документа: 07.03.2017
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
Showing 111-120 of 121 items.
09.06.2018
№218.016.5f75

Устройство регулирования температуры термостатирующего воздуха для космической головной части

Изобретение относится к устройствам регулирования температуры термостатирующего воздуха, подаваемого на космическую головную часть (КГЧ). Устройство регулирования температуры термостатирующего воздуха содержит два дополнительных датчика температуры, один из которых установлен на входе...
Тип: Изобретение
Номер охранного документа: 0002656751
Дата охранного документа: 06.06.2018
13.10.2018
№218.016.919f

Интегрированная автоматизированная система космодрома

Изобретение относится к области автоматики и вычислительной техники и может использоваться при автоматизации объектов управления ракетно-космической области, технического и стартового комплексов космодрома. В систему введены система поддержания принятия решений, формирователь метаобраза объекта...
Тип: Изобретение
Номер охранного документа: 0002669330
Дата охранного документа: 10.10.2018
18.01.2019
№219.016.b124

Способ постоянного поэлементного дублирования в цифровых транзисторных микросхемах

Изобретение относится к способам поэлементного дублирования в нано- и микроцифровых транзисторных микросхемах, подвергающихся воздействию радиации. Технический результат: существенное повышение отказоустойчивости микросхем по сравнению со способом дублирования без использования четырехкратного...
Тип: Изобретение
Номер охранного документа: 0002677359
Дата охранного документа: 16.01.2019
04.04.2019
№219.016.fca0

Способ получения сверхтонких пленок кремния на сапфире

Изобретение относится к микроэлектронике. Сущность изобретения: в способе получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, производят аморфизацию...
Тип: Изобретение
Номер охранного документа: 0002427941
Дата охранного документа: 27.08.2011
09.05.2019
№219.017.50a5

Устройство детектирования течей пароводяной смеси из трубопровода

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования...
Тип: Изобретение
Номер охранного документа: 0002461807
Дата охранного документа: 20.09.2012
04.06.2019
№219.017.736e

Способ акустико-эмиссионного мониторинга степени деградации структуры материала и прогнозирования остаточной прочности изделия

Использование: для мониторинга степени деградации структуры материала и прогнозирования остаточной прочности изделия с применением акустико-эмиссионной диагностики. Сущность изобретения заключается в том, что в процессе акустико-эмиссионного мониторинга изделия при разбиении регистрируемых...
Тип: Изобретение
Номер охранного документа: 0002690200
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.88ae

Способ резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения

Изобретение относится к области электротехники, в частности к способам резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения. В предлагаемом способе активный объект работает при нормальной для него температуре, а идентичный ему резервный объект выключен....
Тип: Изобретение
Номер охранного документа: 0002413281
Дата охранного документа: 27.02.2011
01.11.2019
№219.017.dc28

Способ моделирования переходных процессов накопления повреждений в диагностируемом объекте и устройство бифуркационной модели

Использование: для моделирования неустойчивых переходных процессов накопления повреждений в диагностируемом объекте с регистрацией точек структурной и системной бифуркации. Сущность изобретения заключается в том, что для регистрации динамики переходных процессов при формировании насыпного...
Тип: Изобретение
Номер охранного документа: 0002704575
Дата охранного документа: 29.10.2019
04.02.2020
№220.017.fd32

Способ исследования деформаций и напряжений методом технического зрения

Изобретение относится к области использования систем технического зрения для исследования деформаций и напряжений методом хрупких тензочувствительных покрытий с помощью системы технического зрения. Способ исследования деформаций и напряжений методом технического зрения состоит из программной...
Тип: Изобретение
Номер охранного документа: 0002712758
Дата охранного документа: 31.01.2020
29.06.2020
№220.018.2c89

Способ косвенного измерения отказоустойчивости облучаемых испытательных цифровых микросхем, построенных различными способами постоянного поэлементного резервирования, и функциональная структура испытательной микросхемы, предназначенной для реализации этого способа

Изобретение относится к способам косвенного измерения отказоустойчивости облучаемых цифровых испытательных микросхем, построенных различными способами постоянного поэлементного резервирования, и к испытательным микросхемам для реализации этих способов измерения. Технический результат - создание...
Тип: Изобретение
Номер охранного документа: 0002724804
Дата охранного документа: 25.06.2020
+ добавить свой РИД