×
27.12.2013
216.012.920f

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА

Вид РИД

Изобретение

№ охранного документа
0002503084
Дата охранного документа
27.12.2013
Аннотация: Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение направлено на обеспечение формирование монокристаллических нанопроводников заданной геометрии в матрице собственного оксида. Способ формирования монокристаллических нанопроводников в матрице из собственного оксида включает нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества. Указанный результат достигается также тем, что перед проведением процесса окисления производится полное или частичное удаление маски. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологиях, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем, биодатчиков и запоминающих устройств.

Известен способ формирования решетки нанокластеров кремния на структурированной подложке (RU 2214359[1]). Сущность изобретения заключается в очистке кремниевой подложки, ее маскировании, нанолитографии, осуществляемой таким образом, что границы маскирующих участков ориентированы под углом 45° к базовому срезу [110] подложки, структурировании поверхности подложки травлением, формируя при этом решетку из столбиков кремния, удалении маскирующего слоя, формировании решетки из нанокластеров на структурированной подложке путем термического окисления ее структурированной поверхности с постоянным ростом температуры в приповерхностной области до температуры не ниже 900°C с градиентом роста температуры не менее 106 К/см с образованием решетки из нанокластеров кремния внутри двуокиси кремния, охлаждении подложки до комнатной температуры с тем же постоянным градиентом не менее 106 К/см, повторении цикла нагрева и охлаждения до образования замкнутой оболочки двуокиси кремния и окончательном отжиге подложки с решеткой из нанокластеров кремния в замкнутой оболочке из двуокиси кремния длительностью не менее 20 мин в атмосфере азота. Изобретение позволяет создавать однородные по своим электрическим и оптическим свойствам дискретные наноэлементы, на базе которых строятся все приборы квантовой электроники и оптоэлектроники. Однако их использование имеет ограничения связанные с тем, что при создании приборов квантовой электроники и оптоэлектроники зачастую требуется соединение их отдельных компонентов протяженными проводниками, в то время как в соответствии с известным способом создается по сути точечный элемент проводника, окруженного собственным оксидом.

Известен способ формирования нанопроводов из тонких пленок кремния US 2006286788 [2] (патенты - аналоги US 7217946, WO 2004032182, FR 2845519, EP 1547136).

В соответствии с предложением, первоначально тонкая пленка легированного монокристаллического кремния (обычно между 15 и 20 нм) наносится методом литографии на относительно тонкую подложку из диоксида кремния (SiO2), которая в свою очередь формируется на достаточно толстом слое кремния. К краям пленки подсоединяют электроды, подключенные к источнику постоянного тока. В результате прохождения тока пленка преобразуется в гребенчатую структуру с линейными выступами, ориентированными вдоль линий тока. Диапазон плотности тока, который может привести к образованию такой структуры, зависит от полупроводника. После травления полученной структуры тонкая пленка растворяется, а сохраненные гребни представляют собой нанопровода из кремния на подложке из диоксида кремния с характерным поперечным размером около 7 нм. Недостатком известного способа является то, что он не позволяет создавать провода со сложной топологией, так как их формирование осуществляется по линиям тока, что приводит к получению только прямолинейных отрезков (гребней).

Наиболее близким к заявляемому способу по своей технической сущности и достигаемому результату является способ изготовления наноразмерных проволочных кремниевых структур, известный из описания к RU 2435730[3]. В соответствии со способом изготовления наноразмерных проволочных кремниевых структур на кремниевой подложке последовательно создают слой SiO2, слой кремния и затем опорный слой, на котором методами фотолитографии и ионно-плазменным травлением формируют рельеф с вертикальными стенками в местах будущего расположения наноразмерных элементов, на полученном рельефе конформно создают слой материала для формирования спейсера, который анизотропным травлением удаляют с горизонтальных поверхностей, а его часть, прилегающую к вертикальным стенкам рельефа, используют в качестве маски при анизотропном травлении наноразмерных кремниевых структур. В качестве опорного слоя используют рельеф с вертикальными стенками в кремнии, конформный слой создают термическим окислением поверхности кремния, а в качестве маски при травлении наноразмерных кремниевых структур используют окисленную вертикальную поверхность рельефа конформного слоя на кремнии.

Недостатком известного способа является его относительная сложность (большое количество промежуточных операций), а также то, что в результате получают провод без полной изоляции в виде собственного оксида.

Заявляемый способ направлен на формирование монокристаллических нанопроводников заданной геометрии в матрице собственного оксида. Указанный результат достигается тем, что способ формирования монокристаллических нанопроводников в матрице из собственного оксида, включает нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества.

Указанный результат достигается также тем, что перед проведением процесса окисления производится полное или частичное удаление маски.

Формирование заготовок нанопроводников с заданным рисунком путем удаления части вещества исходной монокристаллической пластины с образованием отрицательных углов наклона стенок углублений к исходной поверхности без нарушения сплошности материала пластины позволяет при осуществлении последующих операций обеспечить формирования монокристаллических нанопроводников в матрице из собственного оксида.

Последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества позволяет завершить процесс формирования монокристаллических нанопроводников в матрице из собственного оксида.

Удаление части вещества исходной монокристаллической пластины с образованием отрицательных углов наклона стенок углублений к исходной поверхности может осуществляться различными путями.

В одном из частных случаев реализации удаление части вещества исходной монокристаллической пластины осуществляют травлением не закрытых маской участков монокристаллической пластины.

Нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода обеспечивает в дальнейшем, при травлении, сохранение в нужных местах исходного материала монокристаллической пластины. Травление открытых участков монокристаллической пластины без нарушения сплошности материала пластины необходимо для того, чтобы исключить отделение сформированного нанопровода от исходной пластины и, соответственно, матрицы оксида. Последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного под маской проводящего вещества позволяет завершить процесс формирования монокристаллических нанопроводников в матрице из собственного оксида.

Сущность заявляемого способа поясняется примерами его реализации и графическими материалами, показывающими отдельные стадии процесса. На фиг.1 показан вариант реализации способа с использованием для удаления части вещества исходной монокристаллической пластины травления не закрытых маской участков монокристаллической пластины. На фиг.2 показан вариант реализации способа когда перед проведением процесса окисления производится полное или частичное удаление маски.

Пример 1. В самом общем случае способ реализуется следующим образом.

На поверхности монокристаллической пластины 1 из исходного материала по известной технологии создается маска 2 требуемой топологии формируемого монокристаллического нанопровода. Производится травление открытых участков монокристаллической пластины таким образом, чтобы профиль травления монокристаллического материала характеризовался отрицательным углом наклона к поверхности. Режимы травления и травитель подбираются экспериментальным путем или на основе справочных данных. При этом, глубина травления, величина отрицательного угла и ширина закрытого маской участка монокристалла должны обеспечить сплошность материала пластины непосредственно под маской с материалом монокристаллической пластины (т.е. в сечении структуры должен остаться перешеек в основании формирующейся трапециевидной балки, соединяющий ее с основной пластиной). Проводится процесс окисления монокристалла на постоянную глубину таким образом, чтобы перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. Другими словами, глубина равномерного окисления должна быть больше, чем половина ширины перешейка, но меньше половины ширины трапециевидной балки в широкой (верхней) части. Окисление может быть проведено любым известным способом: нагрев в атмосфере окислителя; ионно-плазменное окисление и т.п. Перед проведением процесса окисления маска может быть сохранена, а может быть и удалена. Поскольку ширина трапециевидной балки вверху больше ее ширины внизу (перешейка), в верхней части балки остается неокисленный материал, представляющий собой монокристалл, геометрическая форма которого задается рисунком маски на поверхности пластины, электрически изолированный от материала подложки.

Пример 2. На поверхности монокристаллической пластины 1 из кремния (Si) по технологии фотолитографии была создана маска 2 из оксида кремния (SiO2) требуемой топологии формируемого монокристаллического нанопровода. Произведено плазмохимическое травление открытых участков монокристаллической пластины травителем SF6 при температуре 25°C в течение 30 секунд. В результате профиль травления монокристаллического материала характеризовался отрицательным углом в 7,6 градусов наклона к поверхности. Глубина травления составила 75 нм, ширина верхней части сформированной трапециевидной балки составила 50 нм, а перешейка 30 нм.

Затем проводился процесс окисления монокристалла при помощи обработки в кислородной плазме на глубину 15 нм. В результате перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. В верхней части балки остался неокисленный материал, представляющий собой монокристалл, геометрическая форма которого была задана рисунком маски на поверхности пластины, электрически изолированный от материала подложки собственным оксидом.

Пример 3. На поверхности монокристаллической пластины 1 из кремния (Si) по технологии фотолитографии была создана маска 2 из фоторезиста толщиной 50 нм требуемой топологии формируемого монокристаллического нанопровода. Произведено плазмохимическое травление открытых участков монокристаллической пластины травителем SF6 при температуре 25°C в течение 30 секунд. В результате профиль травления монокристаллического материала характеризовался отрицательным углом в 7,6 градусов наклона к поверхности. Глубина травления составила 75 нм, ширина верхней части сформированной трапециевидной балки составила 50 нм, а перешейка 30 нм.

После этого производилось полное удаление маски с поверхности балки при помощи травления в водородной плазме при температуре 25°C в течение 90 секунд. В результате удаления маски балка представляет собой выступ 4 в монокристаллической пластине 1.

Затем проводился процесс окисления монокристалла при помощи обработки в кислородной плазме на глубину 15 нм. В результате перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. В средней части балки остался неокисленный материал, представляющий собой монокристалл, геометрическая форма которого была задана рисунком маски на поверхности пластины, электрически изолированный от материала подложки собственным оксидом, покрытый сверху слоем оксида толщиной 15 нм.


СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА
СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА
Источник поступления информации: Роспатент

Showing 201-210 of 263 items.
09.05.2019
№219.017.5097

Газовый сенсор для индикации оксидов углерода и азота

Изобретение может быть использовано при анализе воздуха на наличие в нем газообразных примесей, в частности оксидов азота и оксида углерода. Газовый сенсор для индикации оксидов углерода и азота включает выполненную из поликристаллического AlO подложку, диоксид олова в составе чувствительного к...
Тип: Изобретение
Номер охранного документа: 0002464554
Дата охранного документа: 20.10.2012
09.05.2019
№219.017.50a5

Устройство детектирования течей пароводяной смеси из трубопровода

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования...
Тип: Изобретение
Номер охранного документа: 0002461807
Дата охранного документа: 20.09.2012
18.05.2019
№219.017.5a84

Способ получения метановодородной смеси

Изобретение относится к области химии и может быть использовано для получения метановодородной смеси, содержащей H и СН, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, для переработки углеводородных газов, а также в хемотермических...
Тип: Изобретение
Номер охранного документа: 0002438969
Дата охранного документа: 10.01.2012
18.05.2019
№219.017.5a88

Способ и устройство локализации расплава активной зоны ядерного реактора

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. Способ локализации расплава включает в себя улавливание, выдерживание и охлаждение расплава в резервуаре, расположенном под реактором....
Тип: Изобретение
Номер охранного документа: 0002432628
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.5ad7

Способ облучения минералов

Изобретение относится преимущественно к радиационным методам обработки ювелирных минералов для повышения их ювелирной ценности. Для этого в способе облучения минералов в нейтронном потоке реактора в контейнере предложено в процессе облучения облучаемые минералы экранировать от тепловых и...
Тип: Изобретение
Номер охранного документа: 0002431003
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5add

Способ хемотермической передачи тепловой энергии

Изобретение относится к способам передачи энергии, преимущественно от ядерных энергетических установок и при участии хемотермических систем, например, конверсии углеродсодержащего вещества. В предложенном способе хемотермической передачи тепловой энергии осуществляют эндотермическую реакцию...
Тип: Изобретение
Номер охранного документа: 0002431208
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5b19

Способ разработки залежи тяжелой нефти

Изобретение относится к разработке нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - снижение расхода теплоносителя, уменьшение затрат на его прокачку и потери. В способе разработки залежи тяжелой нефти...
Тип: Изобретение
Номер охранного документа: 0002444618
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b1a

Способ генерации энергии

Изобретение относится к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств,...
Тип: Изобретение
Номер охранного документа: 0002444637
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b69

Способ генерации энергии в гибридной энергоустановке

Способ генерации энергии в гибридной энергоустановке, в котором окислитель направляют в камеру сгорания теплового двигателя, а также в топливный элемент. В камеру сгорания подают основное топливо. В топливный элемент подают также вторичное топливо. По меньшей мере часть продуктов, выходящих из...
Тип: Изобретение
Номер охранного документа: 0002465693
Дата охранного документа: 27.10.2012
29.05.2019
№219.017.6259

Способ синхронизации устройств в накопительных электронных синхротронах источников синхротронного излучения

Изобретение относится к методам синхронизации для получения точных синхронизирующих импульсов для устройств, располагаемых по периметру кольца электронного синхротрона-накопителя, и может быть использовано в системах временной синхронизации множества разнесенных по периметру электронного...
Тип: Изобретение
Номер охранного документа: 0002689297
Дата охранного документа: 27.05.2019
Showing 151-160 of 160 items.
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.31b9

Способ создания интегрированного криогенного адаптера питания на одном чипе в одном технологическом процессе

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к способу создания интегрированного криогенного адаптера питания на одном чипе. Способ включает нанесение на подложку слоя сверхпроводника и формирование из него методом электронной литографии сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002645167
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
20.02.2019
№219.016.bfec

Устройство энергонезависимой памяти

Изобретение к устройствам энергонезависимой электрически перепрограммируемой памяти, реализуемы с помощью методов микро- и нанотехнологии. Техническим результатом является снижение энергозатрат на считывание хранящейся информации и ее перезапись. Устройство содержит немагнитную матрицу и...
Тип: Изобретение
Номер охранного документа: 0002374704
Дата охранного документа: 27.11.2009
19.07.2019
№219.017.b665

Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает...
Тип: Изобретение
Номер охранного документа: 0002694800
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
10.10.2019
№219.017.d476

Сверхпроводниковый дискретный счетный компонент

Использование: для создания счетного компонента в наноразмерных цифровых устройствах в различных областях науки и техники. Сущность изобретения заключается в том, что сверхпроводниковый дискретный счетный компонент, характеризующийся дискретным набором равновесных состояний, содержит...
Тип: Изобретение
Номер охранного документа: 0002702402
Дата охранного документа: 08.10.2019
21.05.2023
№223.018.6922

Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Способ...
Тип: Изобретение
Номер охранного документа: 0002794493
Дата охранного документа: 19.04.2023
+ добавить свой РИД