×
27.11.2013
216.012.8643

МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа. Заявленный магнитный материал содержит железо (Fe), кобальт (Co), бор (B), по меньшей мере один элемент, выбранный из группы неодим (Nd), празеодим (Pr), по меньшей мере один элемент, выбранный из группы диспрозий (Dy), тербий (Tb), гадолиний (Gd), по меньшей мере один элемент, выбранный из группы алюминий (Al), галлий (Ga), медь (Cu), дополнительно содержит бериллий (Be), а также по меньшей мере один элемент, выбранный из группы лантан (La), гольмий (Ho). При этом химический состав соответствует формуле, ат.%: (R R R )(FeCo)MBeB, где R - по меньшей мере один элемент, выбранный из группы Nd, Pr; где R - по меньшей мере один элемент, выбранный из группы Dy, Tb, Gd; где R - по меньшей мере один элемент, выбранный из группы La, Ho; где М - по меньшей мере один элемент, выбранный из группы Al, Ga, Cu; где x - 0,05-0,50, где x - 0,01-0,05; где y - 0,01-0,40. Техническим результатом является возможность повышения коэффициента квадратичности размагничивающей части петли гистерезиса K=H/H, особенно при криогенных (до 77 К) температурах. Это существенно снижает необратимые потери магнитного потока при эксплуатации магнитов в составе магнитных устройств, а также повышает точность и стабильность навигационного оборудования и систем авиационной и космической автоматики и навигационного оборудования. 2 н.п. ф-лы, 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа.

Известен магнитный материал на основе празеодима, железа, кобальта, алюминия, бора следующего химического состава, ат.%: Pr15Fe62.5Co16Al1B5.5 [Jiang S.Y. et al. Magnetic properties of R-Fe-B and R-Fe-Co-Al-B magnets (R-Pr and Nd), J. Appl. Phys., 1988, V.64, No. 10, pp.5510-5512].

Известен магнитный материал на основе неодима, железа, кобальта, бора следующего химического состава, ат.%: Nd15(Fe1-xCox)77B8, где х=0-0,2 [Sagawa M. et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds, IEEE Trans. On Magnet., 1984, V. MAG-20, No 5, pp.1584-1589].

Изделиями из известных магнитных материалов являются, например, бруски, стрежни, кольца, диски и т.п.

Недостатками известных магнитных материалов и изделий из них, являются недостаточно высокие значения коэрцитивной силы по намагниченности (jHc) и температурной стабильности (высокое значение температурного коэффициента индукции по абсолютной величине).

Известен магнитный материал на основе неодима, тербия, железа, кобальта, бора следующего химического состава, ат.%: (Nd1-x-x2Tbx1Rx2)14-17(Fe1-yCoy1)75-80Ty2B6-8, где R - по меньшей мере один элемент, выбранный из группы: диспрозий (Dy), гольмий (Но), эрбий (Er), тулий (Tm), а Т - по меньшей мере один элемент, выбранный из группы алюминий (Al), галлий (Ga), титан (Ti), ниобий (Nb), молибден (Мо), причем х1+х2=0,1-0,99; х1/х2≥у1=0,2-0,5; у2=0,01-10 [патент РФ №2136069].

Недостатками этого материала являются недостаточно высокие магнитные свойства.

Наиболее близким аналогом, взятым за прототип, является магнитный материал на основе неодима, церия, самария, диспрозия, празеодима, гадолиния, тербия, железа, кобальта, бора следующего химического состава, ат.%:

(Pr1-x1-x2-x3R1x1R2x2Gdx3)11,5-16(Fe1-y1COy1)ост.B6-10,

где R1 - по меньшей мере один элемент, выбранный из группы: диспрозий (Dy), тербий (Tb), R2 - по меньшей мере один элемент, выбранный из группы: самарий (Sm), неодим (Nd), церий (Се);

x1=0,40-0,70; x2+x3=0,001-0,25; у1=0,20-0,43;

при этом магнитный материал дополнительно может содержать по меньшей мере один элемент, выбранный из группы: алюминий (Al), галлий (Ga), титан (Ti), ниобий (Nb), молибден (Мо), при этом химический состав соответствует формуле, ат.%:

(Pr1-х1-х2-x3R1x1R2x2Gdx3)11,5-16(Fe1-y1COy1)ост.Ty2B6-10,

где Т - по меньшей мере один элемент, выбранный из группы: Al, Ga, Ti, Nb; Мо, Cu, ат.%: у2=0,001-1 и изделие выполненное из этого материала [патент РФ №2368969, опубл. 20.05.2009].

Недостатком этого материала являются недостаточно высокий коэффициент квадратичности размагничивающей части петли гистерезиса К (К=Hk/jHc, где jHc - коэрцитивная сила по намагниченности. Hk - величина поля на размагничивающей части петли гистерезиса, при котором остаточная намагниченность уменьшается на 10%), особенно при криогенных (до 77 К) температурах, что существенно увеличивает необратимые потери магнитного потока при эксплуатации магнитов в составе магнитных устройств.

Техническая задача, на решение которой направлено настоящее изобретение, состоит в разработке сплава и изделия, выполненного из него, характеризующихся повышенным коэффициентом квадратичности размагничивающей части петли гистерезиса К=Hk/jHc, особенно при криогенных (до 77 К) температурах.

Технический результат изобретения - повышение коэффициента квадратичности размагничивающей части петли гистерезиса, особенно при криогенных температурах, достигается тем, что магнитный материал, содержащий железо (Fe), кобальт (Со), бор (В), по меньшей мере, один элемент, выбранный из группы неодим (Nd), празеодим (Pr), по меньшей мере, один элемент, выбранный из группы диспрозий (Dy), тербий (Tb), гадолиний (Gd), по меньшей мере, один элемент, выбранный из группы алюминий (Al), галлий (Ga), медь (Cu), дополнительно содержит бериллий (Be), а также, по меньшей мере, один элемент, выбранный из группы лантан (La), гольмий (Но), при этом химический состав соответствует формуле, ат.%:

(R11-x1-x2R2x1R3x2)13,5-15,5(Fe1-yCOy)ост.M0,1-2,0Be0,001-0,2B6-9,

где R1 - по меньшей мере, один элемент, выбранный из группы Nd, Pr;

где R2 - по меньшей мере, один элемент, выбранный из группы Dy, Tb, Gd;

где R3 - по меньшей мере, один элемент, выбранный из группы La, Но;

где М - по меньшей мере, один элемент, выбранный из группы Al, Ga, Cu;

где x1 - 0,05-0,70;

где x2 - 0,01-0,05;

где у - 0,01-0,50.

Технический результат достигается также в изделии, выполненном из заявленного выше материала.

Авторами установлено, что введение в состав материала элементов из группы R3 (La, Но) в сочетании с бериллием (Be) приводят к существенному уменьшению в нем содержания таких интерметаллических фаз, как RM2, RM3, R2M7, R5M19, RM4B и др., которые имеют низкую магнитокристаллическую анизотропию при рабочих, в том числе криогенных температурах. Это приводит повышению коэффициента квадратичности размагничивающей части петли гистерезиса К=Hk/jHc, особенно при криогенных (до 77 К) температурах. Дополнительным фактором, приводящим к увеличению этого параметра, является то, вновь вводимые элементы способствуют созданию наногетерогенной структуры в зернах основной магнитотвердой фазы типа 2-14-1. Авторами также установлено, что введение бериллия способствует лучшей изоляции зерен основной магнитотвердой фазы типа 2-14-1, что также приводит к повышению коэффициента квадратичное™ размагничивающей части петли гистерезиса К=Hk/jHc.

Примеры осуществления предполагаемого изобретения. Сплавы предлагаемого магнитного материала и материала прототипа получают из исходных компонентов или их лигатур путем плавления в вакуумной индукционной печи в среде инертного газа с последующей закалкой в водоохлаждаемую изложницу. Контроль химического состава осуществляют с помощью эмиссионно-спектрального метода. Гидридное диспергирование слитков и редкоземельных элементов осуществляют в протоке сухого водорода при (375-475) К в течение 3.6-10 кс (килосекунд) с последующей пассивацией в среде газообразного азота. После охлаждения до комнатной температуры полученные порошки базового сплава подвергают тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 2.4 кс до среднего размера частиц 3-4 мкм. После прессования в магнитном поле и при Т2=1340 К (7.2 кс) с последующей обработкой по режиму: 1175 К (7.2 кс) охлаждение со скоростью (0.01-0.03) К/с+675 К (10-16 кс)+775 К (7.2 кс)+закалка. После механической шлифовки алмазным инструментом и намагничивания до насыщения образцы измеряют на гистериографе и вибрационном магнитометре. После магнитных измерений для проведения структурных исследований образцы термически размагничивают в вакууме при 775 К, для восстановления исходного состояния. Микроструктуру исследуют с помощью оптической и растровой электронной микроскопии (РЭМ). Используют также локальный рентгеноструктурный анализа (ЛРСА).

Составы и свойства предполагаемого магнитного материала и материала-прототипа приведены в таблицах 1 и 2.

Таблица 1.
Составы предлагаемого магнитного материала и материала прототипа.
Состав магнитного материала, ат.%.
1 (Nd0,78Dy0,05Tb0,15Ho0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
2 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
3 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B6
4 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B9
5 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)13,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
6 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)15,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
7 (Pr0,48Tb0,5Ho0,02)14,5(Fe0,7Co0,3)ост.Cu0,1Al0,3Ga0,1Be0,004B8
8 (Nd0,83Pr0,1Tb0,05Ho0,02)14,5(Fe0,99Co0,01)ост.Cu0,1Al0,3Ga0,1Be0,003B8
9 (Pr0,3Tb0,5La0,02Ho0,02)14,5(Fe0,7Co0,3)ост.Cu0,1Al0,3Ga0,1Be0,004B8
10 (Nd0,3Pr0,27Dy0,15Tb0,25La0,01)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
11 (Nd0,3Pr0,28Dy0,1Tb0,25Ho0,05)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
12 (Nd0,08Pr0,20Dy0,70La0,02)14,5(Fe0,8Co0,2)ост.Ga0,1Be0,003B8
13 (Nd0,3Pr0,28Dy0,15Tb0,25La0,02)14,5(Fe0,8Co0,2)ост.Cu0,15Al0,6Ga0,25Be0,003B8
14 (Pr0,43Tb0,5Ho0,05La0,02)14,5(Fe0,6Co0,4)ост.Cu0,1Al0,3Ga0,1Be0,004B8
15 (Pr0,48Tb0,5Gd0,05La0,02)14,5(Fe0,6Co0,4)ост.Cu0,1Al0,3Ga0,1Be0,004B8
16 (Pr0,48Tb0,5Gd0,05La0,02)14,5(Fe0,6Co0,5)ост.Cu0,1Al0,3Ga0,1Be0,001B8
17 (Pr0,48Tb0,5Gd0,05La0,02)14,5(Fe0,6Co0,4)ост.Cu0,1Al0,3Ga0,1Be0,2B8
18 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1B8
19 (Nd0,3Pr0,3Dy0,15Tb0,25)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
20 (Nd0,3Pr0,3Dy0,13Tb0,25Ho0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,3B8
21 (Nd0,3Pr0,3Dy0,1Tb0,2Ho0,1)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
22 (Nd0,3Pr0,3Dy0,115Tb0,25Ho0,005)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1Be0,003B8
23 (Nd0,3Pr0,3Dy0,13Tb0,25La0,02)14,5(Fe0,8Co0,2)ост.Cu0,1Al0,3Ga0,1B8

Таблица 2.
Свойства предлагаемого магнитного материала и материала прототипа.
№ пп Материал К=Hk/jHc при Т=300 К К=Hk/jHc при Т=77 К
1 Предложенный 0,95 0,91
2 Предложенный 0,94 0,90
3 Предложенный 0,92 0,88
4 Предложенный 0,95 0,91
5 Предложенный 0.91 0,88
6 Предложенный 0,94 0,89
7 Предложенный 0,93 0,88
8 Предложенный 0,85 0,81
9 Предложенный 0,95 0,90
10 Предложенный 0,95 0,91
11 Предложенный 0,94 0,89
12 Предложенный 0,93 0.90
13 Предложенный 0,95 0,91
14 Предложенный 0,94 0,90
15 Предложенный 0,93 0,89
16 Предложенный 0,85 0,82
17 Предложенный 0,85 0,81
18 По прототипу 0,62 0,45
19 По прототипу 0,71 0,53
20 По прототипу 0,61 0,44
21 По прототипу 0,70 0,51
22 По прототипу 0,69 0,50
23 По прототипу 0,60 0,43

Предложенный магнитный материал повысить коэффициент квадратичности размагничивающей части петли гистерезиса К=Hk/jHc, особенно при криогенных (до 77 К) температурах. Это позволяет существенно снизить необратимые потери магнитного потока при эксплуатации магнитов в составе магнитных устройств, а также повысить точность и стабильность навигационного оборудования и систем авиационной и космической автоматики и навигационного оборудования.


МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
Источник поступления информации: Роспатент

Showing 11-19 of 19 items.
10.04.2015
№216.013.4054

Устройство для диагностики заболеваний слизистой оболочки полости носа и околоносовых пазух

Изобретение относится к медицинской технике и может быть использовано для диагностики заболеваний слизистой оболочки полости носа и околоносовых пазух. Устройство содержит зонд, выполненный в виде пустотелой моделируемой канюли 1 с рисками-насечками на внешней поверхности. На дистальном конце...
Тип: Изобретение
Номер охранного документа: 0002547956
Дата охранного документа: 10.04.2015
20.10.2015
№216.013.86b7

Способ изготовления материалов для постоянных магнитов из литых сплавов на основе системы sm-co-fe-cu-zr

Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов на основе системы Sm-Co-Fe-Cu-Zr. Повышение плотности и прочности, увеличение коэрцитивной силы и остаточной индукции полученных магнитных материалов является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002566090
Дата охранного документа: 20.10.2015
10.04.2016
№216.015.2e44

Способ диффузионной сварки

Изобретение относится к способу диффузионной сварки. Очищают детали из нержавеющей стали и мембраны из фольги палладия или палладиевого сплава электрополировкой. Собирают в пакет. В качестве промежуточного слоя применяют фольгу из никеля. Размещают в вакуумной камере. Нагревают. Прикладывают...
Тип: Изобретение
Номер охранного документа: 0002579413
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.8ffd

Способ частичного размагничивания наногетерогенных высококоэрцитивных магнитов типа sm-co-fe-cu-zr

Изобретение относится к электротехнике и может быть использовано для стабилизации магнитных свойств магнитов типа Sm-Co-Fe-Cu-Zr путем их частичного размагничивания. Технический результат состоит в повышении точности и стабильности работы навигационного оборудования и систем авиационной...
Тип: Изобретение
Номер охранного документа: 0002605544
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
20.01.2018
№218.016.1adf

Комбинированная литейная форма для получения столбчатой структуры в изделиях из магнитотвердых материалов типа al-ni-co-ti-fe

Изобретение относится к литейному производству, в частности к получению методом направленной кристаллизации литых постоянных магнитов из магнитотвердых материалов типа Al-Ni-Co-Ti-Fe со столбчатой структурой. Комбинированная литейная форма состоит из керамической формы, обернутой огнеупорным...
Тип: Изобретение
Номер охранного документа: 0002635983
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.2f36

Способ изготовления композиционных мембран на основе тонких пленок металлов

Изобретение относится к технологии создания селективных мембран, функционирующих за счет избирательной диффузии водорода сквозь тонкую пленку палладия или его сплава, и может быть использовано в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из...
Тип: Изобретение
Номер охранного документа: 0002644640
Дата охранного документа: 13.02.2018
01.03.2019
№219.016.ceb7

Способ получения спеченных изделий на основе нитрида кремния

Изобретение относится к области получения изделий из высокотемпературных конструкционных материалов на основе нитрида кремния, которые могут использоваться в машиностроении, авиации и других высокотехнологических отраслях промышленности. Способ получения спеченных изделий на основе нитрида...
Тип: Изобретение
Номер охранного документа: 0002458023
Дата охранного документа: 10.08.2012
22.04.2023
№223.018.50e4

Способ очистки порошков титана и его сплавов от примеси кислорода

Изобретение относится к области порошковой металлургии, в частности к способам очистки порошков титана и его сплавов от примесей кислорода. Очистку порошков титана и его сплавов осуществляют путем взаимодействия с порошком магния или гидрида кальция в потоке термической плазмы инертных газов,...
Тип: Изобретение
Номер охранного документа: 0002794190
Дата охранного документа: 12.04.2023
Showing 21-25 of 25 items.
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019
20.04.2023
№223.018.4aa4

Способ получения анизотропной порошковой заготовки постоянного магнита на основе сплавов типа sm-co

Изобретение относится к порошковой металлургии, в частности к способам получения анизотропных спеченных постоянных магнитов из сплавов Sm-Co. Может использоваться в машиностроении, приборостроении, электротехнической и электронной промышленности. Сплав типа Sm-Co размалывают до среднего размера...
Тип: Изобретение
Номер охранного документа: 0002785217
Дата охранного документа: 05.12.2022
21.05.2023
№223.018.6a95

Стенд для испытаний сочленений рукавов втулки с корпусом втулки несущего винта вертолета

Изобретение относится к области оборудования для испытаний элементов несущих винтов летательных аппаратов. Стенд для испытаний сочленений рукавов втулки с корпусом втулки несущего винта вертолета содержит раму (1), которая включает основание (2) с закрепленными на нем колоннами, тумбой и...
Тип: Изобретение
Номер охранного документа: 0002795551
Дата охранного документа: 05.05.2023
01.06.2023
№223.018.750a

Способ герметизации мембран из сплавов палладия с рзм в конструкции фильтрующих элементов для глубокой очистки водорода методом контактной сварки

Изобретение может быть использовано для получения неразъемных вакуумно-плотных соединений при герметизации мембран из сплавов палладия с РЗМ в конструкции фильтрующих элементов для глубокой очистки водорода. После очистки соединяемых поверхностей проводят сборку пакета, содержащего детали из...
Тип: Изобретение
Номер охранного документа: 0002749404
Дата охранного документа: 09.06.2021
+ добавить свой РИД