×
20.09.2013
216.012.6ab5

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРА ШЕРОХОВАТОСТИ НА ТОКАРНЫХ СТАНКАХ С ЧПУ ПРИ ПОЛУЧИСТОВОЙ И ЧИСТОВОЙ ОБРАБОТКЕ МЕТАЛЛА ТВЕРДОСПЛАВНЫМ ИНСТРУМЕНТОМ

Вид РИД

Изобретение

Аннотация: Способ относится к определению величины параметра шероховатости R при обработке стали с измерением термоэлектродвижущей силы. Для повышения точности определения величины параметра R предварительно осуществляют кратковременный пробный проход резцом по детали, измеряют термоЭДС, по которой определяют поправочный коэффициент на физико-механические свойства контактируемой пары резец-деталь, а величину параметра шероховатости Ra определяют с использованием измеренного значения термоЭДС по приведенной формуле. 7 табл.
Основные результаты: Способ определения величины параметра шероховатости R на токарном станке с ЧПУ при получистовой и чистовой обработке стали твердосплавным инструментом с измерением термоэлектродвижущей силы, отличающийся тем, что предварительно осуществляют кратковременный пробный проход резцом по детали, измеряют термоЭДС, по которой определяют поправочный коэффициент К на физико-механические свойства контактируемой пары резец-деталь, а величину параметра шероховатости R определяют с использованием измеренного значения термоЭДС по формуле где К=А+к·Е - поправочный коэффициент на физико-механические свойства контактной пары резец-деталь;А - постоянная, равная 0,474, определенная из условий предварительной обработки при V=100 м/мин и S=0,l мм/об;к - коэффициент, равный 0,11, определенный из условий предварительной обработки;Е - термоЭДС, мВ;S - подача, мм/об;γ - передний угол резца;r - радиус при вершине резца;V - скорость резания, м/мин;t - глубина резания, мм.

Изобретение относится к обработке металлов резанием на токарных станках с ЧПУ и может быть применено для определения параметра шероховатости Ra автоматизированным (программным) путем.

Известен способ определения шероховатости поверхности детали при обработке на металлорежущим станке с использованием сигнала акустической эмиссии. Шероховатость определяют по отношению площадей спектров зарегистрированного и определенного заранее эталонного сигнала акустической эмиссии (см. Патент РФ 2163182 С1 МПК В23В 25/06 от 20.02.2001 г.).

Недостатком способа является то, что он требует наличие новой эталонной детали при смене марки обрабатываемой стали или марки инструмента и нового тарировочного графика. Кроме того, способ не может быть использован на этапе проектирования (разработки) технологического процесса для определения задаваемого значения шероховатости.

Наиболее близким способом того же назначения к заявленному является способ определения параметра шероховатости Ra при обработке наружных цилиндрических поверхностей в условиях получистового и чистового точения, описанный в Справочнике технолога-машиностроителя. T.1 / под ред. А.М. Дальского, А.Г. Косиловой, Р.К. Мещерякова, А.Г. Суслова, - 5 изд., исправл. - М.: Машиностроение - 1, 2003, - 912 с. стр.172, таблица 15 и таблица 20 стр.179. Способ предусматривает определение параметра шероховатости Ra с учетом влияния скорости резания, подачи, переднего угла резца и коэффициента Ко, учитывающего условия обработки.

Недостатком этого способа является то, что он имеет ограниченное применение по маркам обрабатываемых сталей (ст.3; ст.20; ст.45; ст.70) и не учитывает влияние марки инструментального материала на высоту микронеровностей Ra, а такое влияние имеется (см. книгу Развитие науки о резании металлов, под ред. Зорева Н.Н. М.: Машиностроение, 1967. - 416 с. стр.295, рисунок 8.2). При смене марки инструментального материала изменяется его теплопроводность. Влияние теплопроводности контактируемых пар на шероховатость проявляется через передачу количества выделенного при резании тепла в инструмент и стальную заготовку, т.е. через коэффициент теплоусвоения, представляющий собой отношение теплофизических характеристик инструмента и стальной заготовки. Количество тепла, усвоенного объемом срезаемого металла, определяет долю хрупкого и вязкого разрушения в механизме стружкообразования и оказывает влияние на механизм образования микронеровностей и количественное значение параметра шероховатости Ra через температурную прочность металла.

Указанный недостаток приводит к тому, что рассчитанное значение параметра шероховатости Ra на стадии проектирования технологического процесса токарной обработки по наиболее близкому к заявленному способу не дает приемлимого совпадения с фактическим и это значение выходит за пределы допуска по классу шероховатости, что приводит или к браку по качеству обработанной поверхности или к недоиспользованию резерва повышения производительности (увеличения подачи). При существующем разбросе свойств (как между марочным составом так и внутри его) инструментального материала и обрабатываемых сталей определение параметра шероховатости Ra с ориентацией на среднее (справочное) значение этих свойств (коэффициент Ко) приводит к значительным ошибкам

Задача, на решение которой направлено изобретение состоит в повышении точности определения параметра шероховатости Ra при обработке углеродистых, конструкционных и низколегированных сталей за счет оперативного определения величины поправочного коэффициента Ко, учитывающего физико-механические (теплофизические) свойства каждой контактной пары.

Техническим результатом, который может быть получен при осуществлении изобретения, является повышение точности определения параметра шероховатости Ra программным (автоматизированным) путем на токарных станках с ЧПУ.

Указанный технический результат достигается тем, что в заявленном способе определения параметра шероховатости на токарных станках с ЧПУ при получистовой и чистовой обработке металла твердосплавным инструментом предварительно осуществляют кратковременный пробный проход резцом по детали, измеряют термоЭДС, по которой определяют поправочный коэффициент Ко на физико-механические свойства контактируемой пары резец-деталь, а величину параметра шероховатости Ra определяют с использованием измеренного значения термоЭДС по формуле (I):

где Ко=А+кЕ - поправочный коэффициент на физико-механические свойства контактной пары резец-деталь;

А - постоянная, равная 0,474, определенная из условий предварительной обработки (V=100 м/мин, S=0,1 мм/об и t=1 мм);

к - коэффициент, равный 0,11, определенный из условий предварительной обработки;

Е - термоЭДС, мВ;

S - подача, мм/об;

γ - передний угол резца;

r - радиус при вершине резца;

V - скорость резания, м/мин;

t - глубина резания, мм.

Впервые предложено для определения параметра шероховатости Ra при токарной обработке использовать не справочное значение поправочного коэффициента Ко, учитывающего среднестатистическое значение физико-механических свойств контактируемых пар резец-деталь, а оперативный сигнал термоЭДС, полученный в одинаковых условиях кратковременного пробного прохода резцом по стальной заготовке по всем сочетаниям контактных пар, среди группы углеродистых, конструкционных и низколегированных сталей при обработке их твердосплавным инструментом.

Использование в заявленном способе определения параметра шероховатости Ra термоЭДС пробного прохода контактной пары повышает точность его определения, т.к. удельная составляющая термоЭДС, входящая в общую формулу полного значения ЭДС пары зависит от физико-механических, химических и теплофизических свойств конкретной контактной пары. (см. книгу Г.И. Епифанова «Физика твердого тела», М: Высшая школа, 1977, стр.262-264).

В заявленном способе определения параметра шероховатости Ra коэффициент Ко определяется для каждой контактной пары уравнением Ко=А+кЕ, что исключает ошибки применения среднего справочного значения и обеспечивает повышение точности определения Ra.

Наличие указанных отличительных признаков обеспечивает повышение точности определения параметра Ra при работе токарных станков с ЧПУ и создает возможность производить это определение автоматизированным (программным) путем.

Способ осуществляется следующим образом. Перед началом обработки детали по разработанному технологическому процессу осуществляют кратковременный (4-5 с) пробный проход твердосплавными инструментами по выбранным сталям на строго одинаковых режимах резания (V=100 м/мин, S=0,1 мм/об, t=1 мм), измеряют и фиксируют величину термоЭДС в парах, а затем этими же инструментами производят обработку сталей на выбранных технологических режимах (V, S, t) и измеряют параметр шероховатости Ra. По его измеренным значениям обратным пересчетом определяют значения коэффициента Ко по формуле (2)

и строят зависимость Ко как функцию от величины термоЭДС пробного прохода Е, по которой определяют численное значение постоянной А и величину коэффициента к в уравнении прямой, связывающей зависимость Ко от термоЭДС пробного прохода, а величину параметра шероховатости Ra определяют с использованием измеренного значения термоЭДС по формуле (1)

где Ко=А+кЕ - поправочный коэффициент на физико-механические свойства контактной пары резец-деталь;

А - постоянная, равная 0,474, определенная из условий предварительной обработки (V=100 м/мин, S=0,1 мм/об и t=1 мм);

к - коэффициент, равный 0,11, определенный из условий предварительной обработки;

Е - термоЭДС, мВ;

S - подача, мм/об;

γ - передний угол резца;

r - радиус при вершине резца;

V - скорость резания, м/мин;

t - глубина резания, мм.

Была проведена экспериментальная проверка предлагаемого способа по точности определения параметра шероховатости Ra и сравнения точности «определения по прототипу при токарной обработке марок сталей ст.45; СТ.40Х; ШХ15 твердосплавными инструментами марок Т15К6, Т5К10, ТТ7К12, ТН 20 на режимах получистовой и чистовой обработки на токарном станке с ЧПУ 16К20Ф3. Результаты экспериментальной проверки приведены в таблицах 1-7. Резание проводилось резцами, оснащенными пятигранными сменными неперетачиваемыми пластиками (СНП).

Условия обработки: диапазон изменения глубины резания 0,5-1 мм, диапазон изменения подач S=0.11-0,34 мм/об, диапазон изменения скорости резания V=80-180 м/мин, радиус закругления резца r 1,2 мм, передний угол γ минус 4 градуса, главный угол в плане φ=75 градусов, вспомогательный φ1=15 градусов.

Таблица 1
Сталь 45-Т15К6 (Е=10,8 мВ)
Скорость резания V, м\мин подача S, мм/об Глубина резан., t мм Шероховатость Ra, мкм Шероховатость Ra, мкм
Прототип расчетная Прототип измеренная % относит ошибки предлаг. способ расчет. предлаг. способ измеренная % относит. ошибки
80 0,26 1 7,5 4,3 75 4,8 4,3 11
0.3 1 8,4 4,9 72 5,6 4,9 14
0,34 1 9,3 5,8 60 6,0 5,8 4
100 0,26 1 7,2 3,5 104 4,6 3,5 31
0.3 1 7,9 4,6 71 5,3 4,6 15
0,34 1 8,7 5,7 42 5,8 5,7 2
120 0,26 1 6,8 3,4 100 4,5 3,4 32
0.3 1 7,6 4,8 58 5,2 4,8 8
0,34 1 8,4 4,7 78 5,6 4,7 19
140 0,11 0,5 3,5 1,8 94 2,08 1,8 11
0,15 0,5 4,4 2,4 83 2,7 2,4 12
0,21 0,5 5,7 2,7 110 3,5 2,7 29
160 0,11 0,5 3,3 1,5 124 2,08 1,5 33
0,15 0,5 4,3 2,03 113 2,7 2,03 35
0,21 0,5 5,5 2,3 139 3,5 2,3 34
180 0,11 0,5 3,3 1,7 105 2,0 1,7 18
0,15 0,5 4,1 2,3 78 2,7 2,3 17
0,21 0,5 5,3 3,3 60 2,6 3,3 21

Таблица 2
Сталь 45 - ТТ7К12 (Е=9,5 мВ)
Скорость резания V, м\мин подача S, мм/об глубина резания t, мм Шероховатость Ra, мкм
Предлагаемый способ расчетная Предлагаемый способ измеренная % относительной ошибки
0,26 1 4,1 3,8 8
80 0.3 1 4.8 5,5 12
0,34 1 5,3 6,2 14
0,26 1 4,2 4,0 5
100 0.3 1 4,9 5,1 4
0,34 1 5,3 6,3 16
0,26 1 4,1 4,5 9
120 0.3 1 4,8 4,9 2
0,34 1 5,2 5,8 10
0,11 0,5 1,9 2,1 10
140 0,15 0,5 2,5 2,2 14
0,21 0,5 3,2 2,6 23
0,11 0,5 1,9 1,9 0
160 0,15 0,5 2,4 2,3 4
0,21 0,5 3,2 2,4 33
0,11 0,5 1,8 1,8 0
180 0,15 0,5 2,3 1,9 21
0,21 0,5 3,1 2,3 34

Таблица 3
Сталь 45 - ТН20 (Е=5,9 мВ)
Скорость резания V, м\мин подача S, мм/об глубина резания t, мм Шероховатость Ra, мкм
Предлагаемый способ расчетная Предлагаемый способ измеренная % относительной ошибки
0,26 1 3.2 4,3 25
80 0.3 1 3,7 4,8 23
0,34 1 4,1 4,4 7
0,26 1 3,1 3,7 16
100 0.3 1 3,6 3,6 0
0,34 1 3,9 3,7 5
0,26 1 3,0 3,2 6
120 0.3 1 3,5 3,6 3
0,34 1 3,8 3,9 3
0,11 0,5 1,2 1,7 29
140 0,15 0,5 1,6 1,8 11
0,21 0,5 2,1 2,3 9
0,11 0,5 1,24 2,0 37
160 0,15 0,5 1,61 1,9 16
0,21 0,5 2,16 2,41 14
0,11 0,5 1,22 0,9 33
180 0,15 0,5 1,59 1,45 7
0,21 0,5 2,12 2,5 16

Таблица 4
Сталь 40Х - ТН20 (Е=7,9 мВ)
Скорость резания V, м\мин подача S, мм/об глубина резания t, мм Шероховатость Ra, мкм
Предлагаемый способ расчетная Предлагаемый способ измеренная % относительной ошибки
0,26 1 3,8 2,8 35
80 0.3 1 4,5 3,5 32
0,34 1 4,9 3,7 32
0,26 1 3,7 3,1 19
100 0.3 1 4,3 5,5 21
0,34 1 4,7 4,1 14
0,26 1 3,6 3,3 9
120 0.3 1 4,2 3,7 13
0,34 1 4,5 4,3 5
0,11 0,5 1,61 2,3 30
140 0,15 0,5 2,14 1,9 22
0,21 0,5 2,8 2,2 27
0,11 0,5 1,58 1,48 7
160 0,15 0,5 2,1 1,9 22
0,21 0,5 2,7 2,0 35
0,11 0,5 1,55 1,55 0
180 0,15 0,5 2,0 1,6 25
0,21 0,5 2,6 2,0 30

Таблица 5
Сталь 40Х - ТТ7К12 (Е=10,5 мВ)
Скорость резания V, м\мин подача S, мм/об глубина резания t, мм Шероховатость Ra, мкм
Предлагаемый способ расчетная Предлагаемый способ измеренная % относительной ошибки
0,26 1 4,8 5,05 4
80 0.3 1 5,4 5,7 5
0,34 1 5,9 5,6 5
0,26 1 4,5 4,2 7
100 0.3 1 5,2 5,2 0
0,34 1 5,7 6,5 12
0,26 1 4,4 5,8 24
120 0.3 1 5,1 6,5 9
0,34 1 5,5 6,2 11
0,11 0,5 2,1 3,3 37
140 0,15 0,5 2,7 3,6 22
0,21 0,5 3,6 3,7 3
0,11 0,5 2,0 3,1 35
160 0,15 0,5 2,7 4,0 32
0,21 0,5 3,5 3,8 8
0,11 0,5 1,9 3,2 9
180 0,15 0,5 2,6 4,1 36
0,21 0,5 3,4 4,3 21

Таблица 6
Сталь 40Х - Т5К10 (Е=15,6 мВ)
Скорость резания V, м\мин подача S, мм/об глубина резания t, мм Шероховатость Ra, мкм
Предлагаемый способ расчетная Предлагаемый способ измеренная % относительной ошибки
80 0,26 1 6,5 6,9 6
0.3 1 7,3 7,5 3
0,34 1 8,2 8,1 1,3
100 0,26 1 6,3 6,4 1,2
0.3 1 7,1 7,2 1,3
0,34 1 7,9 8,3 5
120 0,26 1 6,1 6,5 6,5
0.3 1 6,9 6,9 0
0,34 1 7,9 8,0 1,2
140 0,11 0,5 3,0 2,4 25
0,15 0,5 3,1 2,5 24
0,21 0,5 4,1 3,2 28
160 0,11 0,5 2,3 1,9 21
0,15 0,5 3,0 2,5 16
0,21 0,5 4,0 3,4 18
180 0,11 0,5 2,2 2.1 5
0,15 0,5 2,9 2,3 26
0,21 0,5 3,7 2,9 27

Таблица 7
Сталь ШХ15 - Т15К6 (Е=10,7 мВ)
Скорость резания V, м\мин подача S, мм/об глубина резания t, мм Шероховатость Ra, мкм
Предлагаемый способ расчетная Предлагаемый способ измеренная % относительной ошибки
0,26 1 4,7 5,1 8
80 0.3 1 5,5 5,3 4
0,34 1 6,0 5,4 11
0,26 1 4,7 4,5 5
100 0.3 1 5,4 5,4 0
0,34 1 6,0 6,0 0
0,26 1 4,5 4,9 8
120 0.3 1 5,2 4,5 15
0,34 1 5,6 5,2 8
0,11 0,5 2,1 3,0 30
140 0,15 0,5 2,8 2,4 16
0,21 0,5 3,7 3,5 6
0,11 0,5 2,0 2,8 28
160 0,15 0,5 2,7 3,0 10
0,21 0,5 3,6 2,9 24
0,11 0,5 2,0 1,8 11
180 0,15 0,5 2,7 2,6 4
0,21 0,5 3,6 3,7 3

В таблице 1 представлены результаты расчета параметра шероховатости Ra при обработке стали 45 резцом Т15К6, из которой видно, что максимальная относительная погрешность определения параметра Ra по прототипу достигает 58-139%. Ошибка имеет отрицательный знак и не приводит к браку обработки (фактическое значение шероховатости меньше расчетного), но при этом не используется резерв увеличения подачи (производительности обработки). По предлагаемому способу погрешность определения лежит в пределах 2-35% и позволяет использовать резерв повышения производительности. В таблицах (2-7) приведены расчетные и измеренные значения параметра Ra при обработке сталей 45, 40Х и ШХ15 различными марками твердосплавных инструментов. Экперименты проводились с целью расширения диапазона применяемости предлагаемого способа по классу обрабатываемых сталей и учета влияния теплофизических свойств твердосплавного инструмента.

Результаты экспериментов показали, что предлагаемый способ определения Ra учитывает изменения физико-механических свойств контактной пары при смене марки твердосплавного инструмента или марки обрабатываемой стали или при одновременной смене того и другого одновременно. Максимальная относительная погрешность между расчетным значением Ra по предлагаемому способу и измеренным при обработке углеродистых, конструкционных и низколегированных сталей составляет 35%.

Таким образом, применение предлагаемого способа позволяет повысить точность определения параметра шероховатости Ra при токарной обработке и расширяет диапазон его использования по классу обрабатываемых сталей.

Данный способ не регламентирует номенклатуры марок применяемого твердосплавного инструмента и создает возможность определения на токарных станках с ЧПУ параметра шероховатости Ra автоматизированным (программным) путем, используя формулу (1) как основу для построения алгоритма автоматизированного определения.

Способ определения величины параметра шероховатости R на токарном станке с ЧПУ при получистовой и чистовой обработке стали твердосплавным инструментом с измерением термоэлектродвижущей силы, отличающийся тем, что предварительно осуществляют кратковременный пробный проход резцом по детали, измеряют термоЭДС, по которой определяют поправочный коэффициент К на физико-механические свойства контактируемой пары резец-деталь, а величину параметра шероховатости R определяют с использованием измеренного значения термоЭДС по формуле где К=А+к·Е - поправочный коэффициент на физико-механические свойства контактной пары резец-деталь;А - постоянная, равная 0,474, определенная из условий предварительной обработки при V=100 м/мин и S=0,l мм/об;к - коэффициент, равный 0,11, определенный из условий предварительной обработки;Е - термоЭДС, мВ;S - подача, мм/об;γ - передний угол резца;r - радиус при вершине резца;V - скорость резания, м/мин;t - глубина резания, мм.
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРА ШЕРОХОВАТОСТИ НА ТОКАРНЫХ СТАНКАХ С ЧПУ ПРИ ПОЛУЧИСТОВОЙ И ЧИСТОВОЙ ОБРАБОТКЕ МЕТАЛЛА ТВЕРДОСПЛАВНЫМ ИНСТРУМЕНТОМ
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
27.10.2013
№216.012.78f7

Способ контроля состояния режущих кромок сборных многолезвийных инструментов

Изобретение относится к области обработки металлов резанием, в частности, сборным многолезвийным инструментом. С момента начала обработки непрерывно измеряют значение термоЭДС каждой режущей кромки и производят непрерывное сравнение текущих значений термоЭДС каждой режущей кромки с...
Тип: Изобретение
Номер охранного документа: 0002496629
Дата охранного документа: 27.10.2013
20.03.2014
№216.012.ab8e

Способ определения параметра шероховатости r на фрезерных станках с чпу при получистовой и чистовой обработке углеродистых, конструкционных и низколегированных сталей сборным многолезвийным твердосплавным инструментом при торцевом фрезеровании

Способ включает использование рабочих параметров процесса резания и геометрических параметров инструмента. Для повышения точности определения параметра шероховатости предварительно осуществляют пробный проход сборным многолезвийным твердосплавным инструментом по детали, измеряют термоЭДС каждой...
Тип: Изобретение
Номер охранного документа: 0002509633
Дата охранного документа: 20.03.2014
Showing 231-240 of 280 items.
10.05.2016
№216.015.3de6

Колбаса сыровяленая, обогащенная органической формой селена

Изобретение относится к мясоперерабатывающей промышленности и может быть использовано при производстве сыровяленых и сырокопченых колбас. Колбаса, обогащенная органической формой селена, получена способом, предусматривающим приемку, разделку, обвалку, жиловку, замораживание, измельчение мясного...
Тип: Изобретение
Номер охранного документа: 0002583664
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.450b

Привод колес транспортного средства с передним и задним ведущими мостами

Изобретение относится к автомобилестроению и может быть использовано для привода самоходного полноприводного транспортного средства. Привод колес транспортного средства с передним и задним ведущими мостами содержит двигатель (1), смонтированный поперечно продольной оси транспортного средства,...
Тип: Изобретение
Номер охранного документа: 0002586430
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4592

Способ получения высших жирных хлорированных кислот

Изобретение относится к химии производных хлорированных углеводородов, а именно к новому способу получения высших жирных хлорированных кислот общей формулы R(CHCl)COOH, где R - алифатический углеводородный радикал, содержащий 9-22 атомов углерода, n=1-4, которые являются важными продуктами...
Тип: Изобретение
Номер охранного документа: 0002586071
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4632

Импульсный вариатор

Изобретение относится к области машиностроения, в частности к импульсным вариаторам. Импульсный вариатор содержит корпус, ведущий вал, качающуюся шайбу, снабженную внутренней втулкой с осью и подшипником, посаженным в промежуточное кольцо, соединенное осями с наружным кольцом, имеющим цапфы,...
Тип: Изобретение
Номер охранного документа: 0002586803
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4783

Способ получения покрытия из порошкообразного фторопласта-4 на поверхности цилиндрического стального изделия

Изобретение относится к получению защитного покрытия из порошкообразного фторопласта-4 на поверхности цилиндрического стального изделия, включает напрессовку покрытия нагружением от скользящей ударной волны заряда взрывчатого вещества и последующую термообработку. Внутри изделия симметрично его...
Тип: Изобретение
Номер охранного документа: 0002585910
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4b70

Способ производства газона

Изобретение относится к области изготовления растительных покрытий, применяемых для озеленения улиц, площадей, строительства спортивных площадок, а также ландшафтного дизайна. Способ производства газона включает формирование газонных полос с мелкоячеистой основой, высев смеси семян газонных...
Тип: Изобретение
Номер охранного документа: 0002594519
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4bc5

Способ производства газона

Изобретение относится к области изготовления растительных покрытий, применяемых для озеленения улиц, площадей, строительства спортивных площадок, а также ландшафтного дизайна. Способ производства газона включает формирование газонных полос с мелкоячеистой основой, высев смеси семян газонных...
Тип: Изобретение
Номер охранного документа: 0002594518
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.504e

Состав для пропитки абразивного инструмента

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении и эксплуатации абразивных инструментов. Технический результат достигается тем, что состав для пропитки абразивного инструмента содержит ацетон и растворенное в нем органическое вещество, при этом в...
Тип: Изобретение
Номер охранного документа: 0002595790
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5163

Модульный электронный конструктор

Изобретение относится к обучающим играм и учебным макетным пособиям и может быть использовано для обучения студентов и детей школьного возраста основам физики, электротехники и электроники. Модульный электронный конструктор содержит блок интегральных схем, кнопки управления, датчики, блок...
Тип: Изобретение
Номер охранного документа: 0002596095
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.52e5

Способ получения производных имидоилхлоридов

Изобретение относится к области синтеза имидоилхлоридов, являющихся интермедиатами в синтезе биологически активных химических соединений, конкретно к способу получения производных имидоилхлоридов указанной ниже общей формулы, где R=-H, -CH, -ОСH, -CН, Br. Способ осуществляют взаимодействием...
Тип: Изобретение
Номер охранного документа: 0002594165
Дата охранного документа: 10.08.2016
+ добавить свой РИД