×
10.09.2013
216.012.68a4

ЗАЛИВНОЙ КРИОСТАТ ДЛЯ ПРИЕМНИКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к конструктивным элементам регистрирующей техники. Криостат содержит корпус с входным окном, рабочую камеру с охлаждаемой платформой, заливной узел криостатирования охлаждаемой платформы в виде баллона для сжиженного газа, дренажную трубку для выхода паров выкипающего газа. Дренажной трубкой снабжен баллон для сжиженного газа. Трубка выполнена с возможностью размещения ее холодного конца вблизи охлаждаемой платформы в области скопления паров выкипающего газа, образующейся при ориентации криостата входным окном относительно горизонта в горизонтальном, вертикальном и промежуточных положениях, кроме положения входным окном вниз, а теплого конца - с возможностью выхода за пределы баллона для сжиженного газа. Техническим результатом является расширение относительно горизонта диапазона пространственных ориентаций криостата при его работе. 8 з.п. ф-лы, 1 ил.

Изобретение относится к конструктивным элементам регистрирующей техники, а именно, к элементам конструкции фоточувствительных приборов, предназначенных для регистрации инфракрасного (ИК) излучения, в частности, к криостатам для охлаждаемых многоэлементных фотоприемников.

Известен заливной криостат для приемника инфракрасного излучения (Б.И. Формозов. Аэрокосмические фотоприемные устройства в видимом и инфракрасном диапазонах: Учебное пособие / СПбГУАП, СПб., 2002 г., 120 с., стр.50-52), содержащий корпус, размещенные во внутреннем объеме, ограничиваемом корпусом, рабочую камеру, заливной узел криостатирования, сформированный перегородкой, отграничивающей рабочую камеру, в виде контейнера для сжиженного газа - азота, снабженного заливной горловиной, крионасос, трубчатые парозаборники испаряющего азота, предназначенные для циркуляционного охлаждения парами азота фотоприемника, размещенного в рабочей камере. Трубчатые парозаборники испаряющегося азота реализованы с возможностью забора паров из объема контейнера для сжиженного газа и подачи их в рабочую камеру, выполненную с возможностью дренажа паров азота. Корпус со стороны рабочей камеры снабжен входным окном из лейкосапфира диаметром 80 мм. В рабочей камере на некотором расстоянии от входного окна соосно размещено охлаждаемое окно из лейкосапфира диаметром 60 мм, к которому прижата пластина из германия марки ГМО-1 диаметром 60 мм, образуя полосовой ИК-фильтр, установленный в рабочей камере посредством фланца, соединенного индиевым разборным сочленением с перегородкой, отграничивающей рабочую камеру. Перегородка установлена во внутреннем объеме, ограничиваемом корпусом, посредством опор, расположенных в рабочей камере и примыкающих к корпусу. Перегородка снабжена крионасосом на основе березового активированного угля, а корпус снабжен вакуумным вентилем. В рабочей камере на некотором расстоянии от полосового фильтра соосно установлен фотоприемник, соединенный с наружным разъемом типа РГТС-50.

Несмотря на широкое разнообразие конструкций криостатов не для всех видов работ, связанных с регистрацией ИК излучения, можно выбрать оптимально подходящую конструкцию. Нередко, оказывается, необходимо специальное исполнение, обеспечивающее стабильность взаимного расположения всех элементов фотоприемного устройства, размещенных в заднем рабочем отрезке оптической системы, возможность юстировки, а также работоспособность окном вниз, вверх, вбок и т.п. Приведенный криостат удобен при работе с наземными телескопами системы Кассегрена, с которыми криостат должен работать в положении окном вверх. В этом случае заливную горловину герметизируют пробкой. Для охлаждения и криостатирования фотоприемников применяют циркуляционное охлаждение парами испаряющегося азота. В этих целях осуществляют парозаборником сообщение объемов рабочей камеры и контейнера для сжиженного газа. Для работы в положении окном вверх или в положении окном вбок парозаборники выполняют по определенной схеме.

К недостаткам вышеприведенного технического решения относится узость диапазона пространственных ориентации криостата при его работе относительно горизонта. Причины, препятствующие достижению технического результата, носят конструктивный характер. Криостат предназначен для работы только в одном, фиксированном, положении. Для смены положения необходимы конструктивные изменения. Если криостат выполнен с парозаборниками, обеспечивающими его работу окном вверх, то при работе криостата окном вниз, несмотря на откачку насыщенных паров, жидкий азот будет просто выливаться в полость фотоприемника, пока его уровень не сравняется с уровнем парозаборников.

В качестве ближайшего аналога выбран заливной криостат для приемника инфракрасного излучения (патент РФ №2406946 на изобретение, МПК: 8 F25B 19/00), содержащий корпус с входным окном, размещенные во внутреннем объеме, ограничиваемом корпусом, рабочую камеру с охлаждаемой платформой, расположенной напротив окна, заливной узел криостатирования охлаждаемой платформы, выполненный в виде баллона для сжиженного, газа на котором в рабочей камере смонтирована охлаждаемая платформа, контейнер под сорбент, расположенный в объеме баллона. Баллон для сжиженного газа снабжен заливной горловиной из коаксиально расположенных трубок. На внешней поверхности баллона для сжиженного газа, выходящей в объем рабочей камеры, размещена охлаждаемая платформа. Охлаждаемая платформа связана с корпусом посредством подвешивающих ее упруго натянутых струн. Корпус снабжен передним фланцем с входным окном, напротив которого расположена охлаждаемая платформа. Заливная горловина выполнена из трех тонкостенных коаксиально расположенных с зазором трубок размерами, мм: ⌀8×0,2; ⌀10×0,2; ⌀1×20,2. В качестве материала трубок использована нержавеющая сталь. Струны выполнены максимально возможной длины из материала, обеспечивающего им высокую механическую прочность и низкую теплопроводность, и расположены в плоскости, параллельной плоскости охлаждаемой платформы. Максимально возможная длина струн обеспечена их расположением, при котором в плоскости, параллельной плоскости охлаждаемой платформы, струнами образован четырехугольник с прямыми углами, при этом «теплые» концы струн соединены с корпусом, а «холодные» - с охлаждаемой платформой. В криостате «теплые» концы струн соединены с корпусом сваркой, а «холодные» соединены с охлаждаемой платформой посредством промежуточных деталей, механически закрепленных к охлаждаемой платформе. Охлаждаемая платформа выполнена из меди, а промежуточные детали - из нержавеющей стали. В качестве материала струн использована проволока марки Х20Н80. Заливная горловина поверх коаксиально расположенных трубок снабжена фторопластовым колпачком.

В рассматриваемом техническом решении предусмотрен альтернативный вариант выполнения узла криостатирования, - стыкуемый с микрокриогенной системой охлаждения, в виде ножки криостата из коаксиально расположенных трубок, на которой размещена охлаждаемая платформа. Криостат для приемника инфракрасного излучения, реализованный с использованием указанной альтернативы, во внимание не принимается.

К недостаткам вышеприведенного технического решения, выбранного в качестве ближайшего аналога, относится узость диапазона пространственных ориентаций криостата при его работе относительно горизонта. Криостат предназначен для работы в горизонтальном положении - входным окном вбок, в вертикальном положении - входным окном вниз и во всех промежуточных положениях между ними. Криостат не предназначен для работы в вертикальном положении - входным окном вверх и во всех промежуточных положениях от горизонтального до вертикального положения - входным окном вверх.

Причины, препятствующие достижению нижеуказанного технического результата, носят конструктивный характер. При попытке использования криостата для работы в вертикальном положении - входным окном вверх и во всех промежуточных положениях от горизонтального до вертикального положения - входным окном вверх из-за выкипания азота и образования его паров нарушается контакт жидкого азота со стенкой баллона для сжиженного газа, на внешней поверхности которой, выходящей в объем рабочей камеры, размещена охлаждаемая платформа, и между поверхностью жидкого азота и стенкой баллона для сжиженного газа, на которой смонтирована охлаждаемая платформа, образуется пространство, заполненное парами азота. Причем давление паров азота отличается от атмосферного давления. В результате обеспечивается нарушение рабочего температурного режима охлаждаемого фотоприемника.

Техническим результатом изобретения является расширение относительно горизонта диапазона пространственных ориентации криостата при его работе.

Технический результат достигается в заливном криостате для приемника инфракрасного излучения, содержащем корпус с входным окном, размещенные во внутреннем объеме, ограничиваемом корпусом, рабочую камеру с охлаждаемой платформой, расположенной напротив окна, заливной узел криостатирования охлаждаемой платформы в виде баллона для сжиженного газа, на котором в рабочей камере смонтирована охлаждаемая платформа, при этом баллон для сжиженного газа снабжен дренажной трубкой для выхода паров выкипающего газа, выполненной с возможностью размещения ее холодного конца вблизи охлаждаемой платформы в области скопления паров выкипающего газа, образующейся при ориентации входного окна криостата относительно горизонта в горизонтальном, вертикальном и промежуточных положениях, кроме положения входным окном вниз, а теплого конца - с возможностью выхода за пределы баллона для сжиженного газа.

В заливном криостате корпус снабжен передним фланцем, в котором выполнено входное окно, напротив которого расположена охлаждаемая платформа, при этом охлаждаемая платформа, смонтированная на баллоне для сжиженного газа, выполнена соосно с входным окном криостата.

В заливном криостате входное окно, охлаждаемая платформа, смонтированная на баллоне для сжиженного газа, баллон для сжиженного газа, корпус криостата выполнены соосно.

В заливном криостате баллон для сжиженного газа снабжен заливной горловиной из коаксиально расположенных трубок, теплый конец дренажной трубки, реализованный с возможностью выхода за пределы баллона для сжиженного газа, выведен коаксиально через заливную горловину.

В заливном криостате баллон для сжиженного газа снабжен фторопластовой заглушкой, установленной в заливной горловине, препятствующий вытеканию сжиженного газа через заливную горловину, теплый конец дренажной трубки выведен через заглушку сквозным образом.

В заливном криостате заливной горловине установлена для герметизации уплотнительная прокладка, выполнена уплотнительная прокладка из резины.

В заливном криостате заливная горловина снабжена навинчиваемой на нее медной втулкой для уплотнения резиновой прокладки.

В заливном криостате заливная горловина снабжена шайбой, при этом шайба и уплотнительная прокладка установлены между навинчиваемой на заливную горловину втулкой и фторопластовой заглушкой.

В заливном криостате баллон для сжиженного газа выполнен из меди.

Сущность технического решения поясняется нижеследующим описанием и прилагаемой фигурой. На Фиг.1 показан заливной криостат в разрезе: а) и в) при его работе входным окном в бок - при ориентации криостата входным окном в вертикальном положении относительно горизонта; б) при его работе входным окном вниз - при ориентации криостата входным окном в горизонтальном положении относительно горизонта; г) при его работе входным окном вверх при ориентации криостата входным окном в горизонтальном положении относительно горизонта; где 1 - дренажная трубка, 2 - заглушка, 3 - уплотнительная прокладка, 4 - втулка, 5 - шайба, 6 - баллон для сжиженного газа.

Достижение указанного технического результата при использовании предлагаемого криостата в случае сравнения его с первым из приведенных аналогов базируется на его конструктивном выполнении, обеспечивающем его работу при любой пространственной ориентации относительно горизонта без выливания жидкого азота в полость с размещенным фотоприемником.

Достижение указанного технического результата при использовании предлагаемого криостата в случае сравнения его с ближайшим аналогом базируется на особенностях конструктивного выполнения криостата, позволяющих осуществлять устранение нарушения рабочего температурного режима охлаждаемого фотоприемника, стабилизацию рабочей температуры фотоприемника, расположенного на охлаждаемой платформе.

Указанные конструктивные особенности заключаются в том, что в криостате с рабочей камерой и баллоном для сжиженного газа 6, на котором в рабочей камере смонтирована охлаждаемая платформа, баллон для сжиженного газа 6 снабжен дренажной трубкой 1 для выхода паров выкипающего газа (см. Фиг.1) за пределы криостата на атмосферу. Дренажная трубка 1 выполнена с возможностью размещения ее холодного конца вблизи охлаждаемой платформы в области скопления паров выкипающего газа, образующейся при ориентации криостата входным окном в бок (см. Фиг.1, а) и в)), входное окно ориентировано вертикально), входным окном вверх (см. Фиг.1, г)), входное окно ориентировано горизонтально), и промежуточных положениях, кроме положения входным окном вниз (см. Фиг.1, б)), а теплого конца - с возможностью выхода за пределы баллона для сжиженного газа 6 и, в частности, за пределы криостата.

В общем случае выполнения (см. Фиг.1, а)-г)) заявляемый заливной криостат для приемника инфракрасного излучения содержит корпус с входным окном, рабочую камеру с охлаждаемой платформой, заливной узел криостатирования охлаждаемой платформы в виде баллона для сжиженного газа, дренажную трубку для выхода паров выкипающего газа. Рабочая камера с охлаждаемой платформой, заливной узел криостатирования охлаждаемой платформы в виде баллона для сжиженного газа размещены во внутреннем объеме криостата, ограничиваемом корпусом. Охлаждаемая платформа размещена напротив входного окна криостата и смонтирована на баллоне для сжиженного газа 6. Баллон для сжиженного газа 6 снабжен дренажной трубкой 1 для выхода паров выкипающего газа. Дренажная трубка 1 выполнена с возможностью размещения ее холодного конца вблизи охлаждаемой платформы в области скопления паров выкипающего газа, образующейся при ориентации криостата входным окном относительно горизонта в горизонтальном (см. Фиг.1, г)) - входным окном вверх, вертикальном (см. Фиг.1, а) и в)) - входным окном в бок и промежуточных положениях, кроме положения входным окном вниз (см. Фиг. б)), а теплого конца - с возможностью выхода за пределы баллона для сжиженного газа 6.

Корпус снабжен передним фланцем, в котором выполнено входное окно, напротив которого расположена охлаждаемая платформа. Охлаждаемая платформа, смонтированная на баллоне для сжиженного газа 6, выполнена соосно с входным окном криостата. Кроме того, другие конструктивные элементы криостата, в частности, баллон для сжиженного газа 6, корпус криостата выполнены также соосно.

В криостате баллон для сжиженного газа 6, в частности, снабжен заливной горловиной из коаксиально расположенных трубок (см. Фиг.1, д)), теплый конец дренажной трубки 1, реализованный с возможностью выхода за пределы баллона для сжиженного газа 6 и, в том числе, за пределы криостата, выведен коаксиально через заливную горловину (см. Фиг.1, д)). Дренажная трубка 1 для выхода паров выкипающего газа - азота выполнена из стали 12Х18Н10Т, размер, мм: ⌀3×0,2. Дренажная трубка 1 вварена во внутреннем объеме криостата с возможностью ее фиксации к конструктивным элементам криостата, расположенным во внутреннем объеме, например, к корпусу контейнера под сорбент (см. Фиг.1, а)-г)).

Баллон для сжиженного газа 6 снабжен фторопластовой заглушкой 2 (см. Фиг.1, д)), установленной в заливной горловине криостата, препятствующий вытеканию сжиженного газа - азота через заливную горловину, теплый конец дренажной трубки 1 выведен через заглушку 2 сквозным образом. Кроме того, в заливной горловине для герметизации установлена уплотнительная прокладка 3 (см. Фиг.1, д)). Уплотнительная прокладка 3 выполнена из резины. Также заливная горловина снабжена навинчиваемой на нее медной втулкой 4 для уплотнения резиновой прокладки и снабжена дополнительно шайбой 5. При этом шайба 5 и уплотнительная прокладка 3 установлены между навинчиваемой на заливную горловину втулкой и фторопластовой заглушкой 2 (см. Фиг.1, д)).

Баллон для сжиженного газа 6 выполнен из меди. Использование данного материала преследует цель стабилизации температуры криостатирования относительно охлаждаемой платформы по мере выкипания жидкого азота при работе криостата в положении входным окном вверх.

Таким образом, приведенное конструктивное выполнение криостата обеспечивает возможность его работы не только в горизонтальном положении - входным окном вбок, в вертикальном положении - входным окном вниз и во всех промежуточных положениях между ними, что характерно для прототипа, но также обеспечивает возможность его работы в вертикальном положении - входным окном вверх и во всех промежуточных положениях от горизонтального до вертикального положения - входным окном вверх. Предлагаемый заливной криостат «держит» жидкий азот до полного его выкипания во всех указанных положениях не менее 9 часов при емкости баллона для сжиженного газа около 210 мл. Масса криостата составляет примерно 1,9 кг. Время удержания вакуума - не менее 12 лет.

Криостат используют следующим образом.

После предварительной проверки криостата на герметичность на охлаждаемой платформе напротив входного окна в корпусе криостата устанавливают, например, гибридную микросхему матричного или линейчатого фотоприемного устройства, герметизируют передний фланец с входным окном. В контейнер под сорбент загружают сорбент - активированный уголь. Осуществляют его заглушку и герметизацию. Устанавливают криостат на откачной пост. Криостат откачивают до рабочего уровня вакуума, герметизируют путем откусывания штенгеля. Далее готовый к работе криостат устанавливают в прибор, например, тепловизор, в котором он является составной частью, необходимой для работы прибора.

Для охлаждения (80 К) гибридной сборки матрицы фоточувствительных элементов и кремниевого мультиплексора в баллон для сжиженного газа 6 узла криостатирования охлаждаемой платформы заливают азот (см. Фиг.1). Осуществляют выход на рабочий режим. Предлагаемый криостат гарантированно обеспечивает при расходе 210 мл жидкого азота 9 часов непрерывной работы прибора после выхода на рабочий режим, как показано на практике.


ЗАЛИВНОЙ КРИОСТАТ ДЛЯ ПРИЕМНИКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
ЗАЛИВНОЙ КРИОСТАТ ДЛЯ ПРИЕМНИКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 61 items.
20.06.2014
№216.012.d34e

Способ получения структурированной поверхности полупроводников

Изобретение относится к области полупроводниковой технологии и может быть использовано при изготовлении наноструктур. Способ получения структурированной поверхности полупроводников, заключающийся в том, что на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят...
Тип: Изобретение
Номер охранного документа: 0002519865
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dcd0

Сдвиговый регистр

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении реверсивности сдвига информации внутри сдвигового регистра. Сдвиговый регистр содержит ячейки, каждая из которых состоит из трех n-МОП транзисторов, двух емкостей, двух шин тактового питания, шины...
Тип: Изобретение
Номер охранного документа: 0002522306
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.efb9

Сдвиговый регистр

Изобретение относится к оптоэлектронике и микроэлектронике и может быть использовано для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002527188
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f2f1

Плазменный коммутатор

Плазменный коммутатор относится к электронной технике и может быть, в частности, использован при создании импульсных генераторов, источников питания импульсных устройств, импульсных лазеров. Плазменный коммутатор содержит герметизируемую камеру, заполненную рабочим газом, с катодом и сетчатым...
Тип: Изобретение
Номер охранного документа: 0002528015
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f9bb

Устройство считывания для многоэлементных фотоприемников инфракрасного излучения

Изобретение относится к области интегральной микроэлектроники и предназначено для обработки оптической информации. Техническим результатом является повышение точности определения дальности до объектов в одном кадре одновременно с получением тепловизионного изображения. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002529768
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fba9

Сдвиговый регистр (варианты)

Группа изобретений относится к оптоэлектронике и микроэлектронике и может быть использована для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение двунаправленной...
Тип: Изобретение
Номер охранного документа: 0002530271
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fec9

Способ измерения для контроля водорода в твердотельном материале

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур. В отношении образца с тестируемым материалом регистрируют спектр...
Тип: Изобретение
Номер охранного документа: 0002531081
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.19d4

Способ получения приборных графеновых структур

Использование: для разработки наноразмерных приборов на основе гетероструктур с использованием слоев графена и мультиграфена. Сущность изобретения заключается в том, что выращивают на подложке-доноре слой графена, который затем покрывают вспомогательной для переноса графенового слоя пленкой....
Тип: Изобретение
Номер охранного документа: 0002538040
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b0c

Способ изготовления структуры кремний-на-сапфире

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В подложку из кремния проводят имплантацию ионов с формированием слоя, предназначенного для переноса. Осуществляют активирующую обработку поверхности, по которой проводят...
Тип: Изобретение
Номер охранного документа: 0002538352
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2168

Способ изготовления ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии

Предложенный способ относится к изготовлению инструмента измерительной техники для исследований профилей топографических особенностей гладкой поверхности - ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии. Согласно заявленному способу,...
Тип: Изобретение
Номер охранного документа: 0002540000
Дата охранного документа: 27.01.2015
Showing 11-20 of 47 items.
20.06.2014
№216.012.d34e

Способ получения структурированной поверхности полупроводников

Изобретение относится к области полупроводниковой технологии и может быть использовано при изготовлении наноструктур. Способ получения структурированной поверхности полупроводников, заключающийся в том, что на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят...
Тип: Изобретение
Номер охранного документа: 0002519865
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dcd0

Сдвиговый регистр

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении реверсивности сдвига информации внутри сдвигового регистра. Сдвиговый регистр содержит ячейки, каждая из которых состоит из трех n-МОП транзисторов, двух емкостей, двух шин тактового питания, шины...
Тип: Изобретение
Номер охранного документа: 0002522306
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.efb9

Сдвиговый регистр

Изобретение относится к оптоэлектронике и микроэлектронике и может быть использовано для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002527188
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f2f1

Плазменный коммутатор

Плазменный коммутатор относится к электронной технике и может быть, в частности, использован при создании импульсных генераторов, источников питания импульсных устройств, импульсных лазеров. Плазменный коммутатор содержит герметизируемую камеру, заполненную рабочим газом, с катодом и сетчатым...
Тип: Изобретение
Номер охранного документа: 0002528015
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f9bb

Устройство считывания для многоэлементных фотоприемников инфракрасного излучения

Изобретение относится к области интегральной микроэлектроники и предназначено для обработки оптической информации. Техническим результатом является повышение точности определения дальности до объектов в одном кадре одновременно с получением тепловизионного изображения. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002529768
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fba9

Сдвиговый регистр (варианты)

Группа изобретений относится к оптоэлектронике и микроэлектронике и может быть использована для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение двунаправленной...
Тип: Изобретение
Номер охранного документа: 0002530271
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fec9

Способ измерения для контроля водорода в твердотельном материале

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур. В отношении образца с тестируемым материалом регистрируют спектр...
Тип: Изобретение
Номер охранного документа: 0002531081
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.19d4

Способ получения приборных графеновых структур

Использование: для разработки наноразмерных приборов на основе гетероструктур с использованием слоев графена и мультиграфена. Сущность изобретения заключается в том, что выращивают на подложке-доноре слой графена, который затем покрывают вспомогательной для переноса графенового слоя пленкой....
Тип: Изобретение
Номер охранного документа: 0002538040
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b0c

Способ изготовления структуры кремний-на-сапфире

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В подложку из кремния проводят имплантацию ионов с формированием слоя, предназначенного для переноса. Осуществляют активирующую обработку поверхности, по которой проводят...
Тип: Изобретение
Номер охранного документа: 0002538352
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2168

Способ изготовления ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии

Предложенный способ относится к изготовлению инструмента измерительной техники для исследований профилей топографических особенностей гладкой поверхности - ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии. Согласно заявленному способу,...
Тип: Изобретение
Номер охранного документа: 0002540000
Дата охранного документа: 27.01.2015
+ добавить свой РИД