×
10.08.2013
216.012.5c22

Результат интеллектуальной деятельности: КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе водорода или оксида углерода в расплавленном парафине, характеризующийся тем, что наноразмерные частицы железа промотированы медью при следующем соотношении компонентов, % мас.: Cu 5-25; Fe - остальное. Описан способ получения алифатических углеводородов из оксида углерода и водорода в присутствии указанного катализатора. Технический результат - снижение содержания алкенов. 2 н. и 2 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии.

Смеси алифатических углеводородов, содержащих 5 и более атомов углерода (C5+), являются ценными полупродуктами для производства компонентов моторных топлив и смазочных масел, которые выделяют из этих смесей посредством дистилляции. Кроме того, твердые углеводороды (воски) находят применение в качестве составляющих сплавов для точного литья, компонентов парфюмерных и косметических композиций.

В последние годы все больший интерес приобретают методы получения углеводородов различных групп из альтернативного сырья - угля, природного и попутного нефтяного газа, биомассы различного происхождения. Подобные технологии известны из уровня техники и включают, как правило, две основные стадии:

- получение смеси монооксида углерода и водорода, называемой синтез-газом;

- последующее получение углеводородов из синтез-газа способом, известным как синтез Фишера-Тропша.

Из этих стадий вторая является основной, поскольку именно она определяет выход и состав целевых продуктов.

Катализаторы, которые подходят для проведения этой реакции, содержат, как правило, один или несколько каталитически активных переходных металлов VIII группы Периодической системы элементов, нанесенных на оксидные носители, такие как Al2O3, SiO2, TiO2 и т.д. В частности, железо, кобальт, никель и рутений хорошо известны как активные металлы для такого катализатора.

На железосодержащих катализаторах наряду с предельными углеводородами образуются и непредельные углеводороды, преимущественно α-алкены. Иногда содержание алкенов может доходить до 50% мас. (Химические вещества из угля. Пер. с нем. // Под редакцией И.В. Калечица. - М.: Химия, 1980. - 616 с.). Алкены склонны к реакциям присоединения с образованием взрывоопасных органических пероксидов и гидропероксидов, поэтому крайне нестабильны. Использование синтетических углеводородов, полученных в синтезе Фишера-Тропша, в качестве компонентов моторных топлив с высоким содержанием олефинов недопустимо. В частности содержание алкенов в соответствии с европейским экологическим стандартом ЕВРО-4 не должно превышать 18% мас.

Еще одним перспективным направлением использования технологии синтеза Фишера-Тропша является переработка попутного нефтяного газа непосредственно на месторождении с последующей подачей образующегося продукта в нефтепровод. Высокое содержание алкенов также повышает взрывоопасность транспортируемой смеси углеводородов.

Снизить содержание алкенов в продуктах синтеза можно за счет введения в состав катализатора, промотирующих добавок, которые способны усилить гидрирующую способность катализатора. Наиболее доступным и эффективным промотором в данном случае является медь (Li S., Meitzner G.D., Iglesia E. // Studies in Surface Science and Catalysis. 2001. V.136. P.387).

Наиболее перспективным методом получения углеводородных смесей с высоким содержанием восков в настоящее время считается проведение синтеза Фишера-Тропша в трехфазной системе газ - жидкость - твердое тело, то есть в присутствии катализатора, суспендированного в слое высококипящей жидкости (Guettel R., Kuntz U., Turek T. // Chem. Eng. Technol. 2008. V.31. №5. Р.746). Реакторы этого типа носят название жидкофазных или сларри. В условиях трехфазной системы используется мелкодисперсный катализатор, что позволяет снять внутреннюю диффузию и получать более тяжелые продукты.

Использование ультрадисперсных катализаторов с размером частиц менее 0,1 мкм («субмикронная область размеров» или область «наночастиц») позволяет практически полностью избежать внутридиффузионных ограничений и повысить эффективность работы катализатора.

Известен, например, способ получения углеводородов из CO и H2 в «сларри-реакторе» автоклавного типа в присутствии наноразмерного Fe-K-Mn катализатора со средним диаметром частиц 7-18 нм (Bai L., Xiang H.W., Li Y.W., Han Y.Z., Zhong B. // Fuel. 2002. V.81. P.1577). При 22 атм и 250-300°C этот катализатор позволяет получать смеси углеводородных продуктов преимущественно бензиновой фракции. Однако используемый в этом случае метод приготовлении катализатора не позволяет эффективно использовать выбранные промоторы.

Наиболее близким к предлагаемому изобретению является наноразмерный катализатор состава, мас.%: 87-95 Fe, 2-9 K2O, 1-8 Al2O3, который получают и активируют непосредственно в реакторе Хаджиев С.Н., Лядов А.С., Крылова М.В., Крылова М.В. // Нефтехимия. Т.51. №1. С.25. Позднее этот же катализатор и процесс был опубликован в патенте №2443471, МПК B01J 23/745, B82B 1/00, B01J 23/78, B01J 21/04, C07C 1/04, опубл. 27.02.2012. Этот катализатор получают in situ разложением солей входящих в него компонентов в расплаве высокомолекулярных парафинов. Синтез осуществляют в сларри-реакторе автоклавного типа при температуре 200-350°C и давлении 20-30 атм. При этом конверсия CO достигает 90%, а выход углеводородов С5+ около 100 г/м3. Селективность катализатора в отношении образования углеводородов C5+ достаточно высока и достигает 45%.

Однако, недостатком этого катализатора является то, что образующаяся смесь алефатических углеводородов содержит до 45% алкенов, как указано в приведенной выше статье.

Задача предлагаемого изобретения заключается в создании катализатора для получения алифатических углеводородов с пониженным содержанием алкенов методом Фишера-Тропша, а также разработке способа получения алифатических углеводородов.

Поставленная задача решается тем, что предложен катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа, промотированные медью, катализатор сформирован in situ, непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе водорода или оксида углерода и имеет следующий состав, % мас.:

Cu - 5-25; Fe - остальное.

Поставленная задача решается также тем, что предложен способ получения алифатических углеводородов из оксида углерода и водорода в трехфазном реакторе при повышенной температуре и давлении в присутствии наноразмерных, равномерно распределенных в расплавленном парафине частиц железосодержащего катализатора, активированного непосредственно в зоне реакции оксидом углерода и водородом, который проводят в присутствии этого катализатора.

Активацию катализатора проводят при температуре 250-400°C в течение времени, необходимого для образования оксида железа (II, III), после чего для синтеза углеводородов, используют смесь из оксида углерода и водорода, взятых в мольном отношении 1:(0,5-2).

Компоненты катализатора вводят в расплавленный нефтяной парафин или в виде механической смеси солей, или в виде их раствора в растворителе, не смешивающемся с жидкой фазой, например, спирт, вода, эфир.

В предлагаемом техническом решении, возможно, использовать катализаторы, которые подходят для проведения синтеза Фишера-Тропша, содержащие каталитически активные металлы VIII группы, в частности, железо, никель, рутений или кобальт (предпочтительно железо).

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в снижение содержания алкенов в продуктах синтеза до 25% мас.

Катализатор готовят из составляющих его компонентов непосредственно в реакторе синтеза углеводородов (in situ), для чего в жидкую среду, представляющую собой расплавленный нефтяной парафин, т.е. смесь тяжелых (парафиновых) углеводородов при интенсивном перемешивании и температуре вводят эффективное количество компонентов катализатора, главным образом солей. Это так называемый прекурсор катализатора, который используют в виде механической смеси или в виде раствора в растворителе, не смешивающемся с жидкой фазой (спирт, ацетон, вода, эфир и т.п.).

Затем прекурсор подвергают термообработке при температуре 40-450°C в токе водорода или оксида углерода.

В процессе приготовления катализатора образуется устойчивый коллоидный раствор. Согласно данным малоуглового рентгеновского рассеяния размер частиц катализатора 20-25 нм.

Катализатор подвергают активации in situ непосредственно в реакторе, восстанавливая его в токе водорода или оксида углерода, для чего через образовавшуюся суспензию, содержащую наночастицы катализатора при температуре 250-400°C, предпочтительнее 300-350°C, в течение 5-50 ч, предпочтительнее 20-30 ч пропускают водород или оксид углерода.

Затем в этот же реакторе, заполненный жидкой фазой с восстановленным катализатором, подают смесь оксида углерода и водорода, взятых в мольном отношении 1:(0,5-3) и проводят синтез алифатических углеводородов при температуре 200-350°C и давлении 1-50 атм с нагрузкой на катализатор 1-50 л/г кат. ч.

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения.

Пример 1

43,29 г нитрата железа Fe(NO3)3·9H2O и 1,30 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 4,8; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Катализатор активируют в автоклаве (in situ) в токе монооксида углерода при 300°C в течение 24 ч.

Затем на катализаторе осуществляют синтез углеводородов, пропуская через активированный катализатор «синтез-газ» с мольным отношением CO:H2, равным 1:1, в температурном интервале от 220°C до 320°C и давлении 30 атм.

Результаты эксперимента приведены в таблице.

Пример 2

43,29 г нитрата железа Fe(NO3)3·9H2O и 2,61 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 9,1; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Приготовление катализатора, его активацию и синтез углеводородов из CO и H2 осуществляют аналогично описанным в примере 1.

Результаты эксперимента приведены в таблице.

Пример 3

43,29 г нитрата железа Fe(NO3)3·9H2O и 3,89 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 13,0; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Приготовление катализатора, его активацию и синтез углеводородов из CO и H2 осуществляют аналогично описанным в примере 1.

Результаты эксперимента приведены в таблице.

Пример 4

43,29 г нитрата железа Fe(NO3)3·9H2O и 7,90 г нитрата меди Cu(NO3)2·5H2O растворяют в 25 мл дистиллированной воды.

Полученный из такой смеси катализатор имеет состав, % мас.:

Cu - 23,3; Fe - остальное.

Средний размер частиц полученного катализатора составляет 250-270 нм.

Приготовление катализатора, его активацию и синтез углеводородов из CO и H2 осуществляют аналогично описанным в примере 1.

Результаты эксперимента приведены в таблице.

Пример 5 (по прототипу)

Катализатор, содержащий 87,7 Fe, 8,8 K2O, 3,5 Al2O3 (средний размер частиц 650-750 нм), полученный как описано в прототипе, испытывают в реакции получения алифатических углеводородов методом Фишера-Тропша в условиях предлагаемого технического решения.

Результаты эксперимента приведены в таблице.

Таким образом, предлагаемый катализатор позволяет получать алифатические углеводороды методом Фишера-Тропша с высокой селективностью по отношению к C5+-углеводородам (на уровне прототипа), но со значительно более низким содержанием алкенов (до 25% по сравнению с 45% по прототипу).

Источник поступления информации: Роспатент

Showing 81-90 of 149 items.
10.05.2018
№218.016.4e60

Способ получения микро-мезопористого цеолита y и цеолит, полученный этим способом

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами. Способ получения микро-мезопористого цеолита Y включает суспендирование и активацию деалюминированного цеолита Y...
Тип: Изобретение
Номер охранного документа: 0002650897
Дата охранного документа: 18.04.2018
09.06.2018
№218.016.5b72

Способ получения стирола из отходов полистирола

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении. Способ...
Тип: Изобретение
Номер охранного документа: 0002655925
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f20

Способ удаления диоксида углерода из газовых смесей

Изобретение относится к области очистки от диоксида углерода различных газовых смесей, таких как природный газ, газы конверсии углеводородов, дымовые газы и др. методом абсорбции. Способ удаления диоксида углерода из газовых смесей включает абсорбцию диоксида углерода водным раствором...
Тип: Изобретение
Номер охранного документа: 0002656661
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.6221

Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации

Изобретение относится к способу получения высокоплотного реактивного топлива. Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации осуществляют путем гидрирования фракций каменноугольной смолы при повышенных температуре и давлении в присутствии водорода и катализатора,...
Тип: Изобретение
Номер охранного документа: 0002657733
Дата охранного документа: 15.06.2018
26.07.2018
№218.016.74ae

Способ получения катализатора и способ получения этиллевулината с применением полученного катализатора

Изобретение относится к области получения эфиров путем каталитических превращений спиртов, а именно фурфурилового спирта, и может найти применение в парфюмерной промышленности, производстве моторных топлив и других областях, в которых применяют эфиры левулиновой кислоты. В способе получения...
Тип: Изобретение
Номер охранного документа: 0002662165
Дата охранного документа: 24.07.2018
09.08.2018
№218.016.79f8

Нанокомпозитный магнитный материал и способ его получения

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на углеродных нанотрубках. Нанокомпозитный магнитный материал включает полимер - полидифениламин-2-карбоновую кислоту (ПДФАК) и...
Тип: Изобретение
Номер охранного документа: 0002663049
Дата охранного документа: 01.08.2018
01.09.2018
№218.016.81b6

Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с...
Тип: Изобретение
Номер охранного документа: 0002665394
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.81e5

Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, а также в пищевой и полиграфической промышленности....
Тип: Изобретение
Номер охранного документа: 0002665484
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8248

Способ получения металлсодержащих наноразмерных дисперсий

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей...
Тип: Изобретение
Номер охранного документа: 0002665575
Дата охранного документа: 31.08.2018
01.09.2018
№218.016.8269

Способ получения 2-винилнорборнана

Изобретение относится к способу синтеза 2-винилнорборнана, который может быть использован в различных отраслях народного хозяйства, в частности как мономер для получения сополимеров различного назначения, а также топлив, в частности ракетных и для дальней авиации. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002665488
Дата охранного документа: 30.08.2018
Showing 81-90 of 96 items.
01.09.2018
№218.016.8248

Способ получения металлсодержащих наноразмерных дисперсий

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей...
Тип: Изобретение
Номер охранного документа: 0002665575
Дата охранного документа: 31.08.2018
15.10.2018
№218.016.9271

Способ получения дивинила

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002669561
Дата охранного документа: 12.10.2018
11.11.2018
№218.016.9c45

Способ получения катализатора, полученный этим способом катализатор и способ жидкофазного алкилирования изобутана бутиленами в его присутствии

Изобретение относится к технологии производства гетерогенных катализаторов. Предложен способ получения катализатора алкилирования изобутана бутиленами на основе цеолита, включающий ионный обмен путем обработки цеолита типа фожазит, гранулированного без связующего, при 70÷90°C с одновременным...
Тип: Изобретение
Номер охранного документа: 0002672063
Дата охранного документа: 09.11.2018
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
14.12.2018
№218.016.a759

Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном...
Тип: Изобретение
Номер охранного документа: 0002674769
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a76b

Способ переработки тяжелых нефтяных фракций

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей...
Тип: Изобретение
Номер охранного документа: 0002674773
Дата охранного документа: 13.12.2018
18.05.2019
№219.017.5b71

Способ получения алкан-ароматической фракции

Изобретение относится к способу получения алкан-ароматической фракции. Способ характеризуется тем, что этанол и/или диэтиловый эфир пропускают через слой предварительно восстановленного катализатора, представляющего собой цеолит ЦВМ, содержащий 0,4-1 мас.% Pd и 0,5-1 мас.% Zn при температуре...
Тип: Изобретение
Номер охранного документа: 0002466976
Дата охранного документа: 20.11.2012
29.05.2019
№219.017.6a10

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Использование: нефтехимия, газохимия, углехимия, производство синтетических моторных топлив и смазочных масел. Описан катализатор для получения алифатических углеводородов из оксида углерода СО и водорода, содержащий наноразмерные частицы железа, промотированные оксидами калия и алюминия,...
Тип: Изобретение
Номер охранного документа: 0002466790
Дата охранного документа: 20.11.2012
07.06.2019
№219.017.755e

Способ получения катализатора и способ синтеза фишера-тропша в его присутствии

Изобретение относится к нефтехимической промышленности, а именно к синтезу Фишера-Тропша и может быть использовано в переработке альтернативного сырья (природного и попутного нефтяного газа, угля, торфа, битуминозных песков, различных видов биомассы и т.п.) в компоненты моторных топлив....
Тип: Изобретение
Номер охранного документа: 0002690690
Дата охранного документа: 05.06.2019
+ добавить свой РИД