×
20.06.2013
216.012.4c19

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО ПОКРЫТИЯ НА ОРГАНИЧЕСКОМ СТЕКЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники. Способ получения многофункционального покрытия на органическом стекле включает поочередное нанесение пленкообразующих полимерных растворов с наноразмерными неорганическими наполнителями и последующей термообработкой. В качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего на основе метилметакрилата и наноразмерного неорганического наполнителя. При этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова. Концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия. Технический результат - ослабление прохождения ультрафиолетового и инфракрасного излучений, тепла солнечной радиации, а также снижение радиолокационной незаметности. 2 ил., 1 пр.
Основные результаты: Способ получения многофункционального покрытия на органическом стекле, включающий нанесение пленкообразующих полимерных растворов с последующей термообработкой, отличающийся тем, что в качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего на основе метилметакрилата и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова, коллоидного золота или коллоидной меди, которые поочередно наносят на органическое стекло, при этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова, причем концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия.

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники.

Эффективность функционирования и летно-технические характеристики самолетов и вертолетов в достаточной мере зависят от технического уровня применяемого в них остекления, которое на сегодняшний день не в полной мере отвечает необходимым требованиям.

Так, ввиду технических особенностей работы радиолокационного и навигационного оборудования самолета летный персонал подвергается мощному воздействию электромагнитного излучения (ЭМИ), превышающему допустимые санитарные нормы.

Кроме того, остекление не обеспечивает защиту от проникновения тепловой составляющей солнечной радиации. Проблема ослабления теплового излучения особенно актуальна при эксплуатации техники в условиях тропического или жаркого сухого климата. Летный персонал самолета испытывает мощные тепловые нагрузки, приводящие к замедлению реакции летчиков и их восприимчивости к окружающей обстановке.

Пропускание остеклением ультрафиолетовых лучей (УФ) приводит в процессе длительной эксплуатации объекта к деструкции внутрикабинного снаряжения, например фиксирующих ремней кресел пилотов, и, как следствие, потере механической прочности.

Для военной авиации актуальной задачей является также, кроме всех перечисленных выше, снижение радиолокационной незаметности самолета, в частности его внутрикабинного оборудования, расположенного за остеклением.

Защита от электромагнитного излучения актуальна также для радио- и телетрансляционных помещений, помещений мобильной связи и др.

Решение этих проблем лежит в создании эффективного покрытия на поверхности стекла, обеспечивающего функции максимального ослабления потоков электромагнитного и ультрафиолетового излучения, солнечного тепла, снижающего радиолокационную незаметность кабины летательного аппарата, при одновременном сохранении высокого светопропускания в видимом диапазоне спектра. При этом покрытие должно иметь хорошую адгезию к стеклу и высокую устойчивость к воздействию внешних факторов (абразив, влага).

Известен способ получения тонирующих покрытий на закаленном стекле (Патент РФ №2231501, кл.7 C03C 17/25, 17/28) путем нанесения пленкообразующего вещества на закаленное стекло с последующей его термообработкой. Нанесение пленкообразующего вещества осуществляют из растворов на основе металлосодержащих соединений, содержащих абсолютный спирт и алкоксиды алюминия и кобальта.

Недостатком данного способа является то, что покрытие, получаемое по нему, не является многофункциональным. Оно выполняет лишь декоративные и в некоторой степени теплоотражающие функции. Кроме того, данный способ предусматривает нанесение покрытия на «горячую» подложку, то есть на стекло, предварительно разогретое до температуры 300-400°C.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения металлооксидных покрытий (Патент РФ №2118402, кл. C03C 20/08, 17/25), который осуществляется путем нанесения пленкообразующего покрытия из раствора, содержащего алкоксид металла и другие соединения, с последующей термообработкой. При этом раствор может содержать алкоксид металлов - Ti, Zr, Sn, V, алкилы C2-C4, уксусную или пропионовую кислоту при молярном соотношении алкоксид - кислота 1:1 и хлорид аммония в количестве 0,1-0,5 мас.% от общей массы алкоксида.

По второму варианту раствор содержит указанный алкоксид металла, хлорид аммония и ацетат или пропинат металла I VIII групп при молярном соотношении алкоксид:карбосилат 1:1.

По третьему варианту раствор содержит те же компоненты, что и в первом варианте, и дополнительно хлорид или нитрат металла I-VIII групп при молярном соотношении алкоксид:соль:кислота 1:1:2.

Недостатком данного способа является то, что растворы алкоксидов металлов Al, Co, Ti, Zr, Sn, V и карбоновой кислоты могут использоваться при получении покрытий (пленок) из соответствующих оксидов, способных поглощать УФ- или ИК-излучение только в том случае, если на поверхности они формируют наноразмерные кристаллические структуры, способные образовываться только при высокотемпературной (350-400°C) обработке раствора и подложки. Вместе с тем органические стекла не выдержат такой процедуры, так как температура их размягчения составляет 80-120°C.

Данные пленкообразующие растворы содержат в своем составе кислоты, которые взаимодействуют с органическим стеклом, что приводит к потере оптических свойств изделия. Данные варианты растворов имеют низкую адгезию к органическому стеклу из-за отсутствия в их составе компонентов, однородных с подложкой.

Кроме того, наличие в растворах хлоридов аммония и металлов в процессе нанесения вызывает образование большого количества воздуха, загрязненного вредными примесями.

Целью настоящего изобретения является получение многофункционального покрытия на органическое стекло, обеспечивающее ослабление прохождения ультрафиолетового и инфракрасного излучений, тепла солнечной радиации, а также снижение радиолокационной незаметности.

Указанная цель достигается тем, что предложен способ получения многофункционального покрытия на органическом стекле, включающий нанесение пленкообразующих полимерных растворов с последующей термообработкой, отличающийся тем, что в качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова, коллоидного золота или коллоидной меди, которые поочередно наносят на органическое стекло, при этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова, причем концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия.

Данное покрытие обеспечивает все вышеупомянутые требования (функции), имеет хорошую адгезию к органическому стеклу и высокие абразивные характеристики.

Эксплуатационные свойства покрытий (пленок) на органическом стекле, в частности полиметилметакрилата, во многом зависят от их адгезии к подложке. Взаимодействие поверхности полиметилметакрилата с растворителем пленкообразующей композиции и с ее компонентами не должно приводить к изменению структуры поверхности, появлению эффектов серебрения и мутности. Кроме того, не должна нарушаться оптическая прозрачность пленки в видимой области спектра, ее физико-механические свойства. С другой стороны, пленкообразующая композиция должна иметь надежную химическую связь с поверхностью наночастиц наполнителей, вводимых в систему в качестве оптически активных компонентов.

Исходя из химической природы органического стекла, в качестве полимерного связующего, обеспечивающего контакт со стеклом, было выбрано мономерное звено полиметилметакрилата - метилметакрилат (ММкр), а в качестве сополимера к нему взяли 3-меркаптопропилтриметоксисилан (МПС)-HS-(CH2)3-Si(OCH3)3. Кроме того, это вещество известно как надежный стабилизатор наночастиц коллоидного золота и коллоидной меди, которые согласно предлагаемому способу используются в качестве наноразмерных неорганических наполнителей.

Само по себе полимерное связующее не обеспечивает функций и целей, стоящих в данном изобретении. Физический принцип защиты от электромагнитного излучения заключается в экранировании защищаемого объекта металлическими элементами, при этом электромагнитная волна «гасится» в токопроводящем материале. В качестве токопроводящих материалов для покрытий различного назначения используется целая гамма металлов и оксидов металлов. Однако необходимо было выбрать именно те материалы, которые в отдельности или в совокупности в виде растворов обеспечивали необходимые требования.

В этой связи наиболее целесообразным является введение в полимерное связующее наноразмерных наполнителей в виде токопроводящих растворов оксидов индия и олова, а также коллоидного золота или меди.

Выбор в качестве наполнителя оксидов индия и олова (ITO) обусловлен тем, что данный материал хорошо растворяется в полимерном связующем и позволяет получать оптическую тонкую пленку, имеющую высокую адгезию к органическому стеклу. Это обуславливает использование пленки на основе оксидов индия и олова в качестве первого слоя многофункционального покрытия. Важным моментом является тот факт, что пленки на основе оксидов индия и олова обладают свойством существенно ослаблять электромагнитное и ультрафиолетовое излучения, имеют низкий коэффициент отражения, что важно для авиационного остекления. Подбирая количество слоев ITO, можно строить необходимую оптическую конструкцию и получать, помимо требуемых электрических свойств еще и оптические.

Проведенные экспериментальные работы по получению оптимального соотношения компонентов раствора для многофункционального покрытия на органическое стекло показали, что оптимальное соотношение индия в сплаве с оловом составляет 9:1. При этом концентрация наполнителя в виде раствора оксидов индия и олова должна составлять 1-2% от массы всего раствора покрытия.

Как показали эксперименты, концентрация наполнителя в виде раствора оксидов индия и олова ниже 1% не позволяют ослабить поток электромагнитного излучения до необходимого уровня (18 Дб), а превышение концентрации более 2% уменьшает интегральное светопропускание стекла до 65% и ниже, что недопустимо по требованиям к авиационному остеклению.

Важным параметром многофункционального покрытия являются его солнцезащитные свойства, то есть ослабление спектрального пропускания в области длин волн 900-2500 нм. Создание солнцезащитных покрытий на авиационном остеклении - комплексная задача, то есть покрытие должно быть прозрачным в видимом диапазоне длин волн и не прозрачным для ИК-излучения. Пленка на основе оксидов индия и олова существенно ослабляет потоки электромагнитного и ультрафиолетового излучений, в то же время она практически не ослабляет потоки солнечной радиации.

Для получения солнцезащитных характеристик покрытия использовались наноразмерные наполнители в виде раствора коллоидного золота или меди, так как пленки на основе золота и меди хорошо ослабляют потоки солнечной радиации. Поэтому вторым слоем покрытия являлся раствор полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди. Наноразмерность наполнителей (до 10 нм) обусловлена сохранением оптических свойств остекления.

В процессе приготовления раствора коллоидного золота или меди необходимо, чтобы формировались устойчивые коллоиды золота или меди, не склонные к агломерации и изменению окраски во времени. Эмпирическим путем было установлено, что оптимальная концентрация наполнителя в виде раствора коллоидного золота составляет 0.1-0.2% от массы всего раствора покрытия, а меди 0,2-0,5%. Это обусловлено тем, что при восстановлении, например, золотохлористоводородной кислоты в тетрагидрофуране с концентрацией в расчете на золото от 0.1 до 0.2% размеры полученных частиц лежат в диапазоне от 3 до 10 нм и суспензии стабильны во времени. При больших концентрациях (более 0,2%) суспензии нестабильны, идет агломерация и рост частиц, суспензии становятся коричневыми и мутными от смешения крупных и мелких частиц. При меньших концентрациях (менее 0,1%) эффект ослабления потока солнечной радиации незначителен.

Содержание наполнителя в виде раствора коллоидной меди (0.2-0.5%) так же подбиралось эмпирическим путем с учетом тех же требований, что и для золота.

Необходимо отметить, что нанесение металлооптических покрытий, к которым относятся пленки коллоидного золота и меди, на поверхность стекла сильно меняет коэффициент отражения от его поверхности (до 18% вместо 4%). Это на практике может создать ситуацию, когда такого рода покрытие делает остекление не пригодным для использования на летательных аппаратах в виду большого ослепляющего эффекта от бликов остекления в видимой области излучения.

Как указывалось выше, пленки на основе оксидов индия и олова обладают не только защитными от электромагнитного и ультрафиолетового излучений свойствами, но также и антибликовыми свойствами, так как имеют коэффициент отражения до 4%.

В этой связи сверху двух слоев вышеописанных пленок наносился третий слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, аналогичный первому слою покрытия. Нанесенный третий слой пленки позволяет не только снизить коэффициент отражения покрытия до требуемой величины, но и усилить ослабление электромагнитного и ультрафиолетового потоков.

Пример

Готовят полимерное связующее путем реакции радикальной полимеризации 0,08М раствора метилметакрилата в тетрагидрофуране и 0,02М раствора 3-триметоксисилилпропилметакрилата в тетрагидрофуране (мольное соотношение ММА:МСМА=8:2) при 65°C в течение 4,5 часов в присутствии активатора полимеризации - динитрила азоизомасляной кислоты с концентрацией 0,016 моль/л. Полученный сополимер ММА-МСМА очищают тройным переосаждением из раствора ТГФ в гексан, затем сушат под вакуумом при 60°C в течение 12 часов. Из полученного раствора готовят 3% раствор в тетрагидрофуране.

Приготовление полимерного связующего и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова осуществляют следующим образом. Наночастицы оксида индия с оксидом олова в соотношении компонентов 9:1 по массе готовят совместным гидролизом InCl3 и SnCl4 в спиртовой среде. Полученную суспензию порошка ITO вводят в тетрагидрофурановый раствор полимерного связующего в количестве 1-2% от массы всего композита и тщательно перемешивают.

Приготовление полимерного связующего с наполнителем в виде коллоидного золота осуществляют следующим образом. В раствор полимерного связующего добавляют раствор золотохлористоводородной кислоты (HAuCl4) в тетрагидрофуране в количестве 0,1-0,2% от массы всего композита. Полученный прозрачный раствор светло-желтого цвета перемешивают в течение одного часа до приобретения им фиолетово-красного цвета. Появление интенсивного окрашивания раствора свидетельствует об образовании наноразмерных частиц коллоидного золота.

Раствор полимерного связующего с наполнителем в виде коллоидной меди приготавливают по следующей методике. Готовят раствор нитрата меди Cu(NO3)2 в тетрагидрофуране. Полученный раствор нитрата меди в количестве 0,2-0,5% от массы всего композита вводят в тетрагидрофурановый раствор полимерного связующего и интенсивно перемешивают при комнатной температуре. При перемешивании добавляют в него раствор гидридтетрагидробората лития LiB(C2H5)3H в тетрагидрофуране. Голубая окраска раствора нитрата меди резко меняется на темную - цвет хаки, так как идет восстановление иона Cu2+ до свободной меди. Раствор продолжают мешать до приобретения им устойчивого красно-коричневого (бурого) окрашивания, характерной окраски коллоидной меди в растворе.

Полученные растворы наносят послойно на стеклянную подложку в последовательности: раствор полимерного связующего и наноразмерного неорганического наполнителя в виде раствора оксидов индия и олова, раствор полимерного связующего и коллоидного золота или коллоидной меди, опять раствор полимерного связующего с наполнителем в виде раствора оксидов индия и олова.

После нанесения каждого слоя пленки покрытие подсушивают в течение 2-3 часов при температуре 70°C. Образцы были исследованы на поглощение ИК- и УФ-излучений на спектрофотометре СФ256 БИК. Результаты представлены на рисунках 1 и 2.

На рисунке 1 представлена зависимость коэффициента пропускания ИК-излучения от длины волны многослойных покрытий, где: 1 - органическое стекло без покрытия, 2 - органическое стекло с покрытием ITO/Au/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Au - 0,1-0,2%), 3 - органическое стекло с покрытием ITO/Cu/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Cu - 0,2-0,5%).

На рисунке 2 представлены спектры коэффициента пропускания оргстекла с покрытиями в УФ-диапазоне, где: 4 - органическое стекло без покрытия, 5 - органическое стекло с покрытием ITO/Cu/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Cu - 0,2-0,5%), 6 - органическое стекло с покрытием ITO/Au/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Au - 0,1-0,2%).

Таким образом, в предлагаемом способе нанесения многофункционального покрытия на органическое стекло удалось оптимизировать материалы покрытия, их концентрацию и последовательность нанесения таким образом, что при достаточном пропускании в видимом диапазоне покрытие позволяет получить высокие защитные свойства от электромагнитного и ультрафиолетового излучений, солнечного тепла, существенно снизить отражение и заметность на радарах.

Проведенные исследовательские испытания полученных образцов показали эффективность защиты от ЭМИ и УФ в трехсантиметровом диапазоне радиоизлучения - степень ослабления ЭМИ составила не менее 20 Дб, ослабление УФ-излучения в 2 раза, ослабление потока солнечной радиации составляло 40-50%, радиолокационная незаметность снизилась на 30-40%, интегральное отражение в видимом диапазоне 4-6%.

Источники информации

1. Патент РФ №2231501, кл.7 C03C 17/25, 17/28. «Способ получения тонирующих покрытий на закаленном стекле».

2. Патент РФ №2118402, кл. C03C 20/08, 17/25. «Способ получения металлооксидных покрытий».

Способ получения многофункционального покрытия на органическом стекле, включающий нанесение пленкообразующих полимерных растворов с последующей термообработкой, отличающийся тем, что в качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего на основе метилметакрилата и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова, коллоидного золота или коллоидной меди, которые поочередно наносят на органическое стекло, при этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова, причем концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия.
СПОСОБ ПОЛУЧЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО ПОКРЫТИЯ НА ОРГАНИЧЕСКОМ СТЕКЛЕ
СПОСОБ ПОЛУЧЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО ПОКРЫТИЯ НА ОРГАНИЧЕСКОМ СТЕКЛЕ
Источник поступления информации: Роспатент

Showing 251-260 of 324 items.
20.02.2019
№219.016.c227

Гидроакустический приемоизлучающий тракт

Заявлен гидроакустический приемоизлучающий тракт, содержащий блок управления 1, соединенный со вторыми входами блока индикации 2 и основного усилителя 3, а также с синтезатором 4, выходы которого соединены со вторыми входами n смесителей 5-6, а также через n каналов, состоящих каждый из...
Тип: Изобретение
Номер охранного документа: 0002453861
Дата охранного документа: 20.06.2012
20.02.2019
№219.016.c24e

Гидроцилиндр с механическим затвором в крайних положениях поршня

Изобретение относится к области судостроения, машиностроения и касается вопроса создания движительно-рулевых подъемных, винторулевых и подруливающих комплексов с фиксацией полного, высшего положения механизма в крайнем положении. Гидроцилиндр с механическим замком в крайних положениях поршня...
Тип: Изобретение
Номер охранного документа: 0002458817
Дата охранного документа: 20.08.2012
20.02.2019
№219.016.c258

Способ получения деминерализованного костного матрикса в виде крошки

Изобретение относится к медицине, а именно к способу получения деминерализованного костного матрикса в виде крошки. Способ получения деминерализованного костного матрикса в виде крошки, включающий измельчение кости, обработку фрагментов кости раствором Tween-80, удаление детергента, обработку...
Тип: Изобретение
Номер охранного документа: 0002456003
Дата охранного документа: 20.07.2012
23.02.2019
№219.016.c712

Экономнолегированная хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким конструкционным сталям, используемым для изготовления сосудов высокого давления, применяемых для хранения сжатых газов (воздуха) в широком диапазоне температур, в том числе на Крайнем севере. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002680557
Дата охранного документа: 22.02.2019
01.03.2019
№219.016.cede

Устройство для прессования полых стеклоизделий

Изобретение относится к промышленности стройматериалов, к стекольному производству, в частности к области изготовления полых стеклоизделий остекления различных транспортных средств пресс-формованием. Техническим результатом изобретения является повышение оптических показателей стеклоизделий....
Тип: Изобретение
Номер охранного документа: 0002457185
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0ae

Способ упрочнения стеклоизделий

Изобретение относится к области упрочнения стеклоизделий, в частности к светофильтрам, используемым в бортовых аэронавигационных огнях. Технический результат изобретения заключается в получении стеклоизделий, "невидимых" для радара, и повышении их термостойкости. Стеклоизделия нагревают до...
Тип: Изобретение
Номер охранного документа: 0002464243
Дата охранного документа: 20.10.2012
06.03.2019
№219.016.d2d6

Хладостойкая свариваемая arc-сталь повышенной прочности

Изобретение относится к области металлургии, а именно к производству листового проката из хладостойкой arc-стали повышенной прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, машиностроении, мостостроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002681094
Дата охранного документа: 04.03.2019
11.03.2019
№219.016.dbc8

Расплав на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности нанесения покрытий из расплавов на основе цинка на стальную полосу. Расплав содержит 0,003-0,03 мас.% индия, 0,84-5,24 мас.% алюминия, 0,6-3,74 мас.% магния при соотношении алюминия к магнию 1,4:1, и цинк -...
Тип: Изобретение
Номер охранного документа: 0002470088
Дата охранного документа: 20.12.2012
11.03.2019
№219.016.ddde

Способ дифференциальной диагностики респираторных вирусных инфекций методом мультиплексной пцр с детекцией в режиме реального времени и перечень последовательностей для его осуществления

Изобретение относится к биотехнологии, медицинской вирусологии, молекулярной биологии и эпидемиологии. Описан способ дифференциальной диагностики респираторных вирусных инфекций методом мультиплексной обратной транскрипции и ПЦР с детекцией в режиме реального времени. Способ предусматривает...
Тип: Изобретение
Номер охранного документа: 0002460803
Дата охранного документа: 10.09.2012
20.03.2019
№219.016.e975

Электрогидравлический следящий привод

Изобретение относится к области гидроавтоматики и гидропривода и может быть использовано, например, в системах управления объектов с высокими динамическими свойствами при воздействии на них электромагнитных помех, повышенной радиации и работе во взрывоопасных помещениях. Привод содержит...
Тип: Изобретение
Номер охранного документа: 0002467214
Дата охранного документа: 20.11.2012
Showing 251-260 of 267 items.
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
01.03.2019
№219.016.cb6f

Способ нанесения покрытий на крупногабаритные сложнопрофильные изделия с использованием многокомпонентного раствора жидких пленок и устройство для его осуществления

Изобретение относится к технике нанесения покрытий с использованием многокомпонентного раствора жидких пленок, а именно к способам и устройствам при модификации поверхности изделий из органического стекла. Изобретение может быть использовано в любой области машиностроения, в частности для...
Тип: Изобретение
Номер охранного документа: 0002393026
Дата охранного документа: 27.06.2010
01.03.2019
№219.016.d0ae

Способ упрочнения стеклоизделий

Изобретение относится к области упрочнения стеклоизделий, в частности к светофильтрам, используемым в бортовых аэронавигационных огнях. Технический результат изобретения заключается в получении стеклоизделий, "невидимых" для радара, и повышении их термостойкости. Стеклоизделия нагревают до...
Тип: Изобретение
Номер охранного документа: 0002464243
Дата охранного документа: 20.10.2012
15.03.2019
№219.016.e022

Сырьевая смесь для изготовления огнеупорных изделий

Изобретение относится к области производства огнеупоров и может быть использовано для изготовления керамических узлов высокотемпературных агрегатов, огнеприпасов, работающих при температурах до 1800С. Сырьевая смесь для изготовления огнеупорных изделий, включающая электрокорунд фракции менее...
Тип: Изобретение
Номер охранного документа: 0002267469
Дата охранного документа: 10.01.2006
20.03.2019
№219.016.e78a

Способ ионообменного упрочнения керамических изделий из стеклокерамического материала бета-сподуменового состава

Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллических материалов β-сподуменового состава. Технический результат изобретения заключается в повышении качества получаемых изделий за счет снижения дефектов и в снижении трудоемкости операции упрочнения....
Тип: Изобретение
Номер охранного документа: 0002416578
Дата охранного документа: 20.04.2011
10.04.2019
№219.017.08c2

Способ переформования листового стекла

Изобретение относится к области изготовления гнутого стекла, которое может использоваться в качестве защитных стекол для бортовых аэронавигационных огней. Технический результат изобретения заключается в получении заготовок с двойной или более сложной кривизной поверхности с одновременным...
Тип: Изобретение
Номер охранного документа: 0002431613
Дата охранного документа: 20.10.2011
19.04.2019
№219.017.3006

Состав связующего для пропитки волокнистого наполнителя, препрег на его основе, способ получения препрега, способ изготовления теплостойких изделий из композиционного материала на основе препрега и способ изготовления теплостойких изделий из композиционного материала на основе волокнистого наполнителя

Изобретение относится созданию теплостойких конструкций из композиционных материалов (КМ), работающих в экстремальных условиях: длительное воздействие высоких температур (150-200°С) в сочетании с механическими нагрузками и, возможно, высокими дозами ионизирующей радиации. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002304591
Дата охранного документа: 20.08.2007
20.05.2019
№219.017.5c55

Способ нанесения токоподводящих шинок на токопроводящую поверхность полимерного стекла

Изобретение относится к области гальванотехники и может быть использовано для нанесения токоподводящих шинок на электропроводящие покрытия полимерных стекол, используемых при изготовлении электрообогреваемых композиций для авиации, наземного и водного транспорта, архитектурного остекления....
Тип: Изобретение
Номер охранного документа: 0002687999
Дата охранного документа: 17.05.2019
+ добавить свой РИД