×
11.03.2019
219.016.dbc8

РАСПЛАВ НА ОСНОВЕ ЦИНКА ДЛЯ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА СТАЛЬНУЮ ПОЛОСУ ГОРЯЧИМ ПОГРУЖЕНИЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области нанесения защитных металлических покрытий, в частности нанесения покрытий из расплавов на основе цинка на стальную полосу. Расплав содержит 0,003-0,03 мас.% индия, 0,84-5,24 мас.% алюминия, 0,6-3,74 мас.% магния при соотношении алюминия к магнию 1,4:1, и цинк - остальное. Также расплав дополнительно может содержать 0,8-2,4 мас.% олова. Изобретение позволяет повысить качество покрытия и производительность процесса нанесения защитных металлических покрытий, а также снизить энергозатраты и скорость накопления верхнего дросса. 1 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к области нанесения защитных покрытий на полосовой прокат способом горячего погружения в расплав на основе цинка и может быть использовано для нанесения цинк-магний-алюминиевых защитных покрытий на стальную полосу.

Известен способ нанесения защитного покрытия на стальную полосу, включающий обеспечение наличия ванны расплавленного цинка, имеющей эффективную концентрацию алюминия, равную приблизительно 0,10-0,15% по массе, поддержание заданного значения температуры ванны, равного приблизительно 440-450°С [1].

К недостаткам данного расплава следует отнести следующее. Получаемое покрытие обладает невысокой пластичностью, недостаточно высокой адгезией покрытия к основе и недостаточно высокой коррозионной стойкостью, а расплав имеет повышенную температуру и в нем образуется донный дросс. Невысокие пластичность и адгезия покрытия к основе вызваны недостаточным содержанием в расплаве алюминия. Он не только повышает пластичность покрытия, но и препятствует образованию на поверхности полосы хрупких железоцинковых соединений, которые не только могут привести к отслоению покрытия, но и являются причиной плохой смачиваемости поверхности полосы расплавом, препятствующей осаждению покрытия. Если в ванне содержится менее 0,12% алюминия, то в пограничной области между железом и цинком образуется вся гамма соединений железа с цинком, описываемая фазовой диаграммой железо-цинк, причем этих соединений следует избегать. Во избежание образования зародышей бэтта-фазы содержание алюминия должно быть выше 0,15% [2]. Невысокая пластичность покрытия, вызванная недостаточным содержанием в расплаве алюминия, снижает формуемость получаемого материала с покрытием, так как при достаточно глубокой вытяжке, требующейся для изготовления как некоторых автомобильных, так и для некоторых строительных деталей в покрытии возникают микротрещины, которые снижают коррозионную стойкость покрытия. Коррозионная стойкость снижается также из-за возможности возникновения сетки волосных трещин между образующимися кристаллами покрытия, вдоль которых развивается межкристаллитная коррозия. Повышенная температура расплава приводит к более интенсивному испарению довольно дорогого цинка и повышенным затратам на нагрев ванны с расплавом и, соответственно, полосы перед ее входом в ванну с расплавом, что приводит к удорожанию процесса. Образующийся в расплаве донный дросс требует мероприятий по его устранению и исключению попадания на поверхность полосы, что также приводит к удорожанию процесса. Возникает донный дросс в расплаве в результате реакции между железом и цинком при прохождении полосы через расплав. Эта реакция вызывает образование железоцинковых соединений, которые скапливается на дне ванны и поэтому называется донным дроссом. Образование этого донного дросса прекращается (резко замедляется) как только содержание алюминия превысит 0,15% [2].

Известен способ получения стального листа с обычным цинковыми покрытием путем пропускания обрабатываемого листа через ванну из цинка с алюмосодержащей добавкой, содержащую более 0,15 мас.% алюминия, и покрытый таким образом лист не подвергают диффузионной термообработке, причем этот способ отличается тем, что в качестве ванны из цинка с алюмосодержащей добавкой используют ванну, состоящую из цинка, алюминия и кремния, причем содержание кремния составляет от 0,005% до насыщения, предпочтительно от 0,01 до 0,10%, а содержание алюминия составляет максимально 0,5%. Эти составы ванн могут использоваться при температурах от 430 до 510°С, т.е. при температурах, обычно используемых при непрерывном нанесении цинковых покрытий. Однако может оказаться полезным использование более высоких температур для составов, содержащих более 0,06% кремния [2].

К недостаткам этого способа относятся невысокая пластичность и коррозионная стойкость покрытия, а также довольно высокая температура расплава. Невысокая пластичность покрытия вызвана недостаточным содержанием в расплаве алюминия, который ее повышает, из-за чего формуемость получаемого материала с покрытием оказывается недостаточно высокой, так как при глубокой вытяжке, требующейся для изготовления как некоторых автомобильных, так и для некоторых строительных деталей, в покрытии возникают микротрещины, которые снижают коррозионную стойкость покрытия. Довольно высокая температура расплава (около 510°С и более) вызывает более интенсивное испарение дорогого цинка, что приводит к удорожанию процесса вместе с повышенными затратами на нагрев ванны с расплавом и, соответственно, полосы перед ее входом в ванну с расплавом, а также на более частые остановки для ремонта и замены более быстро изнашивающегося оборудования, установленного в ванне для пропускания полосы.

Наиболее близким является расплав для нанесения защитного покрытия, содержащий цинк с добавками алюминия и мишметалла, отличающийся тем, что, с целью повышения срока службы покрытия, расплав дополнительно содержит индий при следующем соотношении компонентов, мас.%: алюминий 4,0-6,0; мишметалл 0,02-0,06; индий 0,003-0,03; цинк - остальное, причем температура расплава поддерживается в диапазоне 390-430°С [3].

Недостатками вышеуказанного расплава являются трудоемкость корректировки его состава, повышенное образование плавающего верхнего дросса, недостаточно высокое качество и низкая твердость получаемого покрытия. Трудоемкость регулировки состава расплава вызвана применением мишметалла, представляющего собой сплав редкоземельных элементов с большим количеством других примесей (этот сплав содержит 45-50% Се, 20-25% La, 15-17% Nd и 8-10% др. элементов, до 5% Fe и 0,1-0,3% Si), причем составы мишметалла у разных производителей заметно отличаются друг от друга в процентном отношении как по основным компонентам, так и по примесям, что усложняет не только процесс подготовки этой добавки для введения ее в расплав, но и контроль количественного ее наличия в расплаве. Это приводит не только к усложнению процесса регулирования состава расплава ванны в процессе нанесения покрытия на движущуюся полосу, что вызывает удорожание конечного продукта, но и к снижению качества покрытия из-за примесей, которые могут вызывать образование на поверхности полосы мелких локальных хрупких интерметаллидных соединений, снижающих в этих местах смачиваемость и растекаемость цинк-алюминиевого покрытия к поверхности стальной полосы. Это, в свою очередь, вызывает отслоение покрытия в этих местах при деформации листа с покрытием в процессе изготовлении из него деталей с применением гибки или штамповки. Повышенное образование плавающего верхнего дросса происходит из-за достаточно большого содержания в расплаве алюминия и практически неконтролируемой в мишметалле примеси железа в количестве около 5%, которое, вступая в реакцию с алюминием расплава, практически полностью переходит в железоалюминиевые компоненты дросса (соединения FeAl3 и Fe2Al5), всплывающего на поверхность ванны и налипающего на поверхность полосы при ее входе и выходе из ванны с расплавом, что снижает качество покрытия. Как было отмечено выше, верхний (плавающий) дросс приводит к удорожанию процесса нанесения покрытия, так как необходимо периодически проводить мероприятия по его удалению из ванны для предотвращения его налипания на полосу и негативного влияния на оборудование, установленное в ванне с расплавом. Невысокая твердость покрытия, вызванная наличием в покрытии достаточно большого количества пластичного алюминия, а также индия, препятствует использованию этого материала в автомобильных и строительных деталях, требующих достаточно высокую твердость покрытия и, соответственно, высокую стойкость на истирание.

Техническим результатом изобретения является повышение твердости, коррозионной стойкости и качества покрытия, снижение трудоемкости корректировки состава расплава и снижение образования плавающего дросса, а также снижение затрат на проведение процесса нанесения защитного покрытия на стальную полосу.

Технический результат изобретения достигается тем, что из расплава-прототипа исключен мишметалл и добавлено 0,6-3,74 мас.% магния, то есть в состав расплава на основе цинка для нанесения защитного покрытия на стальную полосу горячим погружением, содержащий алюминий, 0,003-0,03 мас.% индия, цинк - остальное, добавлено 0,6-3,74 мас.% магния, причем расплав содержит 0,84-5,24 мас.% алюминия при соотношении алюминия к магнию 1,4:1.

Еще отличием для достижения поставленной задачи изобретения является то, что в вышеуказанный согласно данному изобретению расплав, содержащий 0,84-5,24 мас.% алюминия, 0,003-0,03 мас.% индия, 0,6-3,74 мас.% магния (добавленный компонент по данному изобретению), цинк - остальное, дополнительно добавлено 0,8-2,4 мас.% олова.

Новые признаки в совокупности с известными позволяют достичь задачи изобретения, выраженной в техническом результате.

Повышение твердости покрытия и соответственно повышение стойкости (износостойкости) покрытия на истирание, а также повышение коррозионной стойкости и качества покрытия достигается новой совокупностью компонентов расплава благодаря введению в расплав, содержащий алюминий, 0,003-0,03 мас.% индия, цинк - остальное, дополнительно 0,6-3,74 мас.% магния, причем расплав содержит 0,84-5,24 мас.% алюминия и соотношение к магнию составляет 1,4:1. Экспериментально было установлено, что при количестве магния в расплаве меньше 0,6 мас.% и, соответственно, алюминия меньше 0,84 мас.% твердость и коррозионная стойкость покрытия незначительно отличаются в лучшую сторону от образцов, изготовленных согласно прототипу, а при количестве магния в расплаве больше 3,74 мас.% и, соответственно, алюминия больше 5,24 мас.% покрытие становится заметно хрупким, что проявляется в появлении в покрытии микротрещин при испытаниях на изгиб до соприкосновения сторон согласно ГОСТ 14019-2003 (EURONORM 12) «Метод испытания на изгиб» для горячеоцинкованного проката, а также при испытаниях на выдавливание лунок шариком Эриксена в соответствии с ГОСТ 14918-80 «Сталь тонколистовая оцинкованная с непрерывных линий. Технические требования» и ГОСТ 10510-80 «Методы испытания на выдавливание листов и лент по Эриксену».

Повышение коррозионной стойкости покрытия происходит благодаря образованию на поверхности стальной полосы сплошного мелкокристаллического интерметаллидного слоя сложного состава из компонентов стальной полосы и расплава с новой совокупностью компонентов, хорошо смачиваемого расплавом, а также благодаря образованию на поверхности интерметаллидного слоя сплошного равномерного основного защитного покрытия с новой совокупностью компонентов без образования сетки волосных межкристаллитных трещин. Для определения наличия дефектов в интерметаллидном слое производили снятие основного слоя покрытия в растворе хромового ангидрида с добавлением фосфорной кислоты. После этого визуально с применением оптических приборов осматривали поверхность образцов и выявляли дефекты, количество которых в виде непокрытых точечных вкраплений составляло не более 6-8 штук на квадратный дециметр, что в среднем в 1,5 раза меньше, чем на аналогичных образцах с покрытием, нанесенным в соответствии с прототипом. На образцах стали марки 08Ю по ГОСТ 9045-93 «Прокат тонколистовой холоднокатаный из низкоуглеродистой качественной стали для холодной штамповки» размером 80×120 мм и толщиной 0,5 мм с нанесенным покрытием толщиной 20 мкм проводили ускоренные испытания на коррозионную стойкость по ГОСТ 9.308-85 «Методы ускоренных коррозионных испытаний». Продолжительность испытаний составляла 6 часов. Испытания на коррозионную стойкость проводили как на плоских образцах с покрытием, так и на образцах гнутых и с выдавленными лунками шариком Эриксена в соответствии с ГОСТ 14918-80 и ГОСТ 10510-80. Результаты испытаний показали, что образцы с покрытием, нанесенным из расплава с новой совокупностью компонентов, в среднем на 15% превышают по коррозионной стойкости образцы с покрытием, нанесенным из расплава согласно прототипу, при одинаковой толщине покрытия на сравниваемых образцах.

Качество поверхности покрытия определяли визуальным обследованием образцов на наличие оголенных участков, неровностей, выступающих из поверхности (вызванных дроссом), вздутий, однородности блеска по поверхности образцов и общего вида покрытия. Обследование показало, что качество поверхности покрытия является хорошим как на плоских образцах, так и на образцах, подвергшихся деформации, то есть на образцах после испытаний их на изгиб до соприкосновения сторон согласно ГОСТ 14019-2003 (EURONORM 12) «Метод испытания на изгиб» для горячеоцинкованного проката и после испытаний на выдавливание лунок шариком Эриксена в соответствии с ГОСТ 14918-80 «Сталь тонколистовая оцинкованная с непрерывных линий» и в соответствии с ГОСТ 10510-80 «Метод испытания листов и лент по Эриксену».

Формуемость (штампуемость) образцов с покрытием, которое по результатам обследования на качество всегда оказывалось хорошим, определяли визуальным обследованием на наличие в покрытии на поверхности растянутой стороны трещин (микротрещины), отслаивания, шелушения, сколов, вздутий и растрескивания после испытаний их на изгиб до соприкосновения сторон согласно ГОСТ 14019-2003 (EURONORM 12) для горячеоцинкованного проката и после испытаний на выдавливание лунок шариком Эриксена в соответствии с ГОСТ 14918-80 и ГОСТ 10510-80. Результаты обследования показали, что образцы с покрытием, нанесенным из расплава с новой совокупностью компонентов, хорошо выдерживают весьма глубокую вытяжку (ВГ) в соответствии с ГОСТ 14918-80 с сохранением хорошего внешнего вида.

Снижение трудоемкости корректировки расплава обеспечено исключением из его состава мишметалла, в составе которого как основные компоненты, так и примеси в процентном отношении у разных производителей отличаются в широких диапазонах, что сильно усложняет их использование при корректировке расплава в ванне в процессе нанесения покрытия на стальную полосу.

Снижение железоалюминиевого плавающего дросса (соединения FeAl2 и Fe2Al5) происходит, во-первых, благодаря исключению из расплава мишметалла, содержащего около 5% Fe, который (из-за достаточно высокого содержания алюминия в расплаве) практически полностью реагирует с алюминием расплава с образованием железоалюминиевых соединений. Во-вторых, новая совокупность компонентов расплава положительно влияет на уменьшение образования железоалюминиевых компонентов дросса вследствие активного образования на поверхности полосы сплошного интерметаллидного слоя сложного состава, препятствующего диффузии Fe из полосы в расплав.

Поставленная задача изобретения по снижению затрат на проведение процесса нанесения защитного покрытия на стальную полосу достигается также тем, что в расплав с новой совокупностью компонентов дополнительно введено 0,8-2,4 мас.% олова, благодаря чему оказалось, что процесс нанесения покрытия можно проводить при более низкой температуре расплава, а именно при 370-410°С, при сохранении всех изложенных выше улучшений в покрытии, достигнутых с применением новой совокупности компонентов расплава при отсутствии в его составе олова. Введение 0,8-2,4 мас.% олова в расплав повышает смачиваемость поверхности полосы расплавом, чем обеспечена возможность снижения температуры расплава, при этом экспериментально было установлено, что при количестве олова в расплаве менее 0,8 мас.% и при температуре расплава 380°С происходит снижение коррозионной стойкости по причине увеличения в интерметаллидном слое стальной полосы количества точечных дефектов, а при количестве олова в расплаве более 2,4 мас.% начинает резко снижаться твердость покрытия. Снижение температуры расплава снижает интенсивность испарения цинка, дополнительно снижает интенсивность образования железоалюминиевых компонентов верхнего дросса благодаря уменьшению диффузии железа в расплав, а также снижает энергозатраты на нагрев ванны с расплавом, что в совокупности снижает затраты на изготовление стальной полосы с покрытием из сплава на основе цинка с новой совокупностью компонентов.

Примеры использования изобретения приведены ниже.

Образцы стали марки 08Ю по ГОСТ 9045-93 «Прокат тонколистовой холоднокатаный из низкоуглеродистой качественной стали для холодной штамповки» размером 80×120 мм и толщиной 0,5 мм предварительно обезжиривали, травили и для восстановления окисленной поверхности нагревали в атмосфере восстановительной смеси, состоящей из 85% N2 и 15% H2, до температуры 850°С. Затем образцы в этой же атмосфере охлаждали до температуры, превышающий температуру расплава на 5-10°С, опускали в расплав с температурой 370-410°С на 3 секунды, вынимали, охлаждали, осматривали для определения внешнего вида и подвергали испытаниям для определения коррозионной стойкости, формуемости и качества покрытия.

Нанесение покрытия на образцы производили в пяти количественных значениях для каждого компонента расплава, добавленных в цинк, а именно: менее минимального, минимальное, среднее, максимальное, более максимального, причем как с добавлением олова, так и без олова, а соотношение алюминия к магнию придавали значения 1:1; 1,3:1; 1,4:1; 1,5:1. При этом температура расплава имела также пять значений, то есть менее минимального, минимальное, среднее, максимальное и более максимального, а именно: 365°С, 370°С, 390°С, 410°С и 415°С. Количество образцов для каждого из указанных режимов изготавливалось не менее трех штук.

После извлечения образцов из ванны с расплавом и охлаждения определяли качество поверхности покрытия визуальным обследованием поверхности образцов на наличие оголенных участков, неровностей, выступающих из поверхности (вызванных шламом), вздутий, однородности блеска по поверхности образцов и общего вида покрытия. Обследование показало, что качество поверхности покрытия без олова и с оловом при соотношении алюминия к магнию 1,4:1 при температурах расплава от 370°С до 410°С является хорошим как на плоских образцах, так и на образцах, подвергшихся деформации, то есть на образцах после испытаний их на изгиб до соприкосновения сторон согласно ГОСТ 14019-2003 (EURONORM 12) «Метод испытания на изгиб» для горячеоцинкованного проката и после испытаний на выдавливание лунок по Эриксену в соответствии с ГОСТ 14918-80 «Сталь тонколистовая оцинкованная с непрерывных линий» и в соответствии с ГОСТ 10510-80 «Метод испытания листов и лент по Эриксену».

Формуемость (способность испытывать различного вида деформации без нарушения защитных свойств покрытия) образцов с покрытием определяли визуальным обследованием на наличие в покрытии на растянутой стороне трещин (микротрещины), отслаивания, шелушения, сколов, вздутий и растрескивания после испытаний их на изгиб до соприкосновения сторон согласно ГОСТ 14019-2003 (EURONORM 12) для горячеоцинкованного проката и после испытаний на выдавливание лунок по Эриксену в соответствии с ГОСТ 14918-80 и ГОСТ 10510-80. Результаты обследования показали, что образцы с покрытием, нанесенным из расплава с новой совокупностью компонентов (без олова и с оловом) и соотношением алюминия к магнию 1,4:1 при температурах расплава от 370°С до 410°С, хорошо выдерживают весьма глубокую вытяжку (ВГ) в соответствии с ГОСТ 14918-80 с сохранением хорошего внешнего вида.

Массу (толщину) покрытия определяли гравиметрическим методом по ГОСТ Р 52246 - 2004 «Прокат листовой горячеоцинкованный» путем взвешивания образцов до и после растворения цинкового покрытия. Определение массы покрытия проводили на 3 образцах и вычисляли среднеарифметическое значение.

Адгезию покрытия определяли по ГОСТ 14019-2003 «Метод испытания на изгиб», по которому образец с покрытием изгибали на 180° до соприкосновения сторон. Прочность сцепления покрытия со стальной основой должна обеспечивать отсутствие отслоения покрытия с наружной стороны изгиба. Все образцы с покрытием согласно новой совокупности компонентов и новых температурных режимов прошли испытание успешно.

После этого определяли коррозионную стойкость на образцах с нанесенным покрытием толщиной 20 мкм. Для этого проводили ускоренные испытания на коррозионную стойкость по ГОСТ 9.308-85 «Покрытия металлические и неметаллические неорганические. Методы ускоренных коррозионных испытаний». Продолжительность испытаний составляла 6 часов. Испытания на коррозионную стойкость проводили как на плоских образцах с покрытием, так и на образцах гнутых и с выдавленными лунками по Эриксену в соответствии с ГОСТ 14918-80 и ГОСТ 10510-80. Результаты испытаний показали, что образцы с покрытием, нанесенным из расплава с новой совокупностью компонентов (как без олова, так и с оловом) при соотношении в расплаве алюминия к магнию 1,4:1 при температурах расплава от 370°С до 410°С, превышают по коррозионной стойкости в среднем на 15% образцы с покрытием, нанесенным из расплава согласно прототипу, при одинаковой толщине покрытия на сравниваемых образцах.

Определение наличия дефектов в интерметаллидном слое, влияющем на коррозионную стойкость и качество нанесенного покрытия, производили после снятия основного слоя покрытия в растворе хромового ангидрида с добавлением фосфорной кислоты. Затем визуально с применением оптических приборов (луп и микроскопов с различным увеличением) осматривали поверхность образцов и выявляли дефекты, количество которых в виде непокрытых точечных вкраплений составляло не более 6-8 штук на квадратный дециметр, что в среднем в 1,5 раза меньше для образцов с покрытием, нанесенным из расплава с новой совокупностью компонентов (как без олова, так и с оловом) при соотношении в расплаве алюминия к магнию 1,4:1 при температурах расплава от 370°С до 410°С, чем на аналогичных образцах с покрытием, нанесенным в соответствии с прототипом.

Источники информации

1. Патент РФ №2241063, МПК С23С 2/06, С23С 2/36, опубликовано 27.11.2004.

2. Патент РФ №2114930, МПК С23С 2/06, опубликовано 10.07.1998.

3. Авт. свид. СССР №1793003, МПК С23С 2/06, опубликовано 07.02.1993.

Источник поступления информации: Роспатент

Showing 1-10 of 289 items.
10.01.2013
№216.012.17dc

Способ газолазерной резки крупногабаритных деталей из композиционных материалов и устройство для его осуществления

Изобретение относится к способу и устройству газолазерной резки композиционных материалов. Способ включает подачу лазерного луча на обрабатываемую поверхность и соосно с лучом - технологического газа, коллимирование лазерного луча, заглубление его в обрабатываемое изделие и перемещение по...
Тип: Изобретение
Номер охранного документа: 0002471600
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18c2

Полимерная композиция

Изобретение относится к негорючим полимерным композициям холодного отверждения и может применяться для местного упрочнения конструкций в зонах установки крепежа, заполнения пустот в деталях из полимерных композиционных материалов, заделки торцов и упрочнения участков сотовых конструкций,...
Тип: Изобретение
Номер охранного документа: 0002471830
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18cd

Грунтовочная композиция

Изобретение относится к лакокрасочным покрытиям, в частности к грунтовочным композициям с пониженным содержанием летучих веществ холодного отверждения, предназначенным для окраски металлических и неметаллических поверхностей, и может быть использовано в авиационной технике, в строительстве и...
Тип: Изобретение
Номер охранного документа: 0002471841
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2aa5

Способ получения конъюгата нона-β-(1→3)-глюкозида с бычьим сывороточным альбумином скваратным методом

Изобретение относится к области биохимии. Предложен способ синтеза конъюгата нона-β-(1→3)-глюкозида с бычьим сывороточным альбумином (БСА) скваратным методом. Первоначально осуществляют взаимодействие нона-β-(1→3)-глюкозида с диэтилскваратом. Затем проводят реакцию полученного лиганда -...
Тип: Изобретение
Номер охранного документа: 0002476444
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b51

Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического...
Тип: Изобретение
Номер охранного документа: 0002476616
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2c

Способ измерения температуры поверхности конструкции резистивным чувствительным элементом, устройство для его осуществления и способ изготовления устройства

Изобретение относится к измерительной технике и может быть использовано в тепло-прочностных испытаниях авиационно-космических конструкций при определении их поверхностных температурных полей. Согласно заявленному способу для измерения температуры поверхности конструкции чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002476835
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2d

Способ определения температурной характеристики резисторного чувствительного элемента, устройство для его осуществления и способ изготовления устройства

Изобретение относится к измерительной технике и может быть использовано при испытании и калибровке термометров сопротивления и тензорезисторов. Согласно заявленному способу определения температурной характеристики резисторного чувствительного элемента регистрируют температуру воздействия и...
Тип: Изобретение
Номер охранного документа: 0002476836
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c32

Устройство для измерения звукового давления

Изобретение относится к измерительной технике и может быть использовано для измерения звукового давления. Устройство содержит датчик с емкостным чувствительным элементом с обкладками конденсатора и экранами, усилитель заряда, состоящий из операционного усилителя, резистора и конденсатора...
Тип: Изобретение
Номер охранного документа: 0002476841
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c33

Устройство для измерения давления, температуры и теплового потока

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения в заданном участке температуры, теплового потока и давления. Техническим результатом изобретения является расширение области применения, повышение информативности и точности измерения давления,...
Тип: Изобретение
Номер охранного документа: 0002476842
Дата охранного документа: 27.02.2013
Showing 1-10 of 64 items.
27.02.2013
№216.012.29ff

Способ производства горячекатаной широкополосной стали

Изобретение предназначено для повышения потребительских свойств горячекатаного широкополосного проката в виде широкополосной стали. Способ включает горячую прокатку, ускоренное охлаждение полос с заданными температурами и с последующей смоткой их в рулоны. Повышение прочностных свойств проката...
Тип: Изобретение
Номер охранного документа: 0002476278
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2d88

Способ автоматического управления процессом прокатки в непрерывной группе клетей

Изобретение относится к области прокатки и предназначено для автоматической настройки скоростей клетей при заправке полосы в непрерывной группе листового прокатного стана. В установившемся режиме прокатки предыдущей полосы запоминают статическую просадку скорости электропривода клети, а при...
Тип: Изобретение
Номер охранного документа: 0002477187
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2d92

Промежуточный ковш для разливки стали с камерами для плазменного подогрева жидкого металла

Изобретение относится к металлургии, в частности к непрерывной разливке металла. Ковш содержит две камеры для плазменного подогрева металла, расположенные между приемным и разливочными отсеками, разделенными перегородками с переливными каналами. Переливные каналы в перегородке камеры подогрева...
Тип: Изобретение
Номер охранного документа: 0002477197
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e1b

Сварочная проволока из низкоуглеродистой легированной стали

Изобретение относится к области металлургии, а именно к стали, используемой при производстве сварочной проволоки. Сталь содержит компоненты при следующем соотношении, в мас.%: углерод 0,05-0,08, марганец 1,60-2,30, кремний 0,60-0,95, фосфор не более 0,015, сера не более 0,010, хром до менее...
Тип: Изобретение
Номер охранного документа: 0002477334
Дата охранного документа: 10.03.2013
27.03.2013
№216.012.30c3

Промежуточный ковш мнлз для плазменного подогрева металла

Изобретение относится к металлургии. Промежуточный ковш содержит приемный и разливочный отсеки, разделенные перегородками с переливными каналами и две камеры нагрева с крышками, выполненные между приемным и разливочными отсеками. В крышках выполнены отверстия для ввода плазматрона. В камере...
Тип: Изобретение
Номер охранного документа: 0002478021
Дата охранного документа: 27.03.2013
27.05.2013
№216.012.4485

Способ металлизации сидеритового сырья с получением гранулированного чугуна и железистомагнезиального шлака

Изобретение относится к области металлургии и может быть использовано при производстве гранулированного чугуна и комплексного флюса для сталеплавильного производства. Изобретение решает задачу повышения эффективности производства гранулированного чугуна из сидеритового сырья за счет оптимизации...
Тип: Изобретение
Номер охранного документа: 0002483118
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4ca7

Состав расплава на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности, к нанесению покрытий из расплава на основе цинка на стальную полосу. Расплав содержит 0,7-3,4 мас.% магния, 0,01-0,1 мас.% серебра, 0,84-4,08 мас.% алюминия, цинк - остальное. При этом содержание алюминия к...
Тип: Изобретение
Номер охранного документа: 0002485205
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.607c

Способ металлизации железорудного сырья с получением гранулированного чугуна

Изобретение относится к металлургии и может быть использовано для повышения эффективности производства гранулированного чугуна. Способ включает дозирование железорудного сырья, твердого топлива, связующего и флюсующих добавок, смешивание и окомкование исходной шихты, сушку и термическую...
Тип: Изобретение
Номер охранного документа: 0002490332
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.6706

Способ непрерывной разливки стали

Изобретение относится к металлургии. В способе непрерывной разливки стали осуществляют подачу металла из сталеразливочного ковша в промежуточный ковш и далее через погружные стаканы в центральные и периферийные кристаллизаторы, формирование в кристаллизаторах непрерывнолитых заготовок, их...
Тип: Изобретение
Номер охранного документа: 0002492021
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.71f3

Способ автоматического регулирования натяжения полосы в черновой группе клетей непрерывного прокатного стана

Изобретение относится к прокатному производству, в частности к прокатке с минимальным натяжением или подпором проката в непрерывной подгруппе черновых клетей широкополосного стана горячей прокатки. Осуществляют регулирование натяжения полосы для каждой группы, состоящей из вертикальной и...
Тип: Изобретение
Номер охранного документа: 0002494828
Дата охранного документа: 10.10.2013
+ добавить свой РИД