×
10.05.2013
216.012.3de9

Результат интеллектуальной деятельности: ВЫСОКОПРОЧНАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к составам сталей, используемых в энергетическом машиностроении. Сталь содержит, мас.%: углерод 0,07-0,18, марганец 0,40-1,50, кремний 0,17-0,80, молибден 0,10-0,14, ванадий 0,15-0,45, хром 0,50-2,00, алюминий 0,005-0,012, азот 0,002-0,010, титан 0,002-0,060, цирконий 0,001-0,300, РЗМ 0,01-0,07, кальций 0,0003-0,0015, магний 0,0003-0,010, бор 0,001-0,007, сера 0,005-0,015, железо - остальное. Для компонентов стали выполняются следующие соотношения: (Ti+Al):N=3,5-10,0 и (Zr+В+0,5 РЗМ):Мо=0,07-2,5. Повышается длительная прочность при рабочих температурах 500-610°С, а также увеличивается срок службы изделий. 2 табл., 1 пр.
Основные результаты: Теплостойкая сталь, содержащая углерод, кремний, марганец, молибден, ванадий, хром, титан, магний, алюминий, азот, бор, кальций, серу, железо, отличающаяся тем, что она дополнительно содержит цирконий и РЗМ при следующем соотношении компонентов, мас.%: при соотношении (Ti+Al):N=3,5-10,0 и(Zr+В+0,5 РЗМ):Мо=0,07-2,5.

Изобретение относится к металлургии, конкретно к составу теплостойкой стали, и может быть использовано в энергетическом машиностроении.

Известна хромомолибденованадиевая сталь, содержащая (мас.%): 0,08-0,15 C, 0,40-0,70 Mn, 0,17-0,37 Si, 0,9-1,2 Cr, 0,25-0,35 Mo, 0,15-0,30 V (ГОСТ 5520-79).

После принятой термической обработки (нормализации с 950-980°C, охлаждения на воздухе, отпуска при 720-750°C с охлаждением на воздухе) имеет пределы длительной прочности за 100.000 часов при температурах:

540°C - 110 МПа,

570°C - 80 МПа,

600°C - 56 МПа.

Недостатком стали является то, что она не может работать свыше 600°C при заданных параметрах.

Известна сталь, содержащая (мас.%): 0,02-0,18 C, 0,02-0,60 Si, 0,40-1,70 Mn, <0,06 V, 0,8 Cr, 0,005-0,06 РЗМ, 0,0015-0,0060 B, <0,04 Zr, <0,04 Ti, <0,5 Cu, <1 Ni (Японская заявка кл. 10y172 (C22C 38/06) №52-101625, №51-19254. опубл. 25.08.77).

Однако эта сталь не может использоваться для работы в течение длительного времени при высоких температурах ввиду отсутствия основных легирующих элементов, которые необходимы для получения требуемых свойств в сталях такого назначения.

Наиболее близким аналогом настоящего изобретения является теплоустойчивая сталь, содержащая, мас.%: углерод 0,07-0,16; марганец 0,40-1,50; кремний 0,17-0,80; молибден 0,15-1,10; ванадий 0,15-0,45; хром 0,50-2,0, алюминий 0,002-0,008; азот 0,002-0,0089, титан 0,001-0,085; кальций 0,0003-0,030; магний 0,0003-0,030; бор 0,001-0,003; сера 0,003-0,015; железо - остальное, при условии, что соотношение суммы содержания титана, алюминия, бора к содержанию азота составляет 2-12 суммы содержания кальция и магния к содержанию серы составляет 0,2-4,0 (Авторское свидетельство СССР №1680796, опубл. 30.09.1991, МПК C22C 38/32 - прототип).

Цель, указанная в прототипе, - повышение длительной пластичности и срока службы изделий при 570°C,

Однако в этой стали не учтены соотношения по легированию твердого раствора, а следовательно, и перераспределение их будет такое, которое не обеспечивает стабильность свойств. Эта сталь не может эксплуатироваться свыше 600°C и имеет сравнительно низкие значения длительной прочности.

Технический результат изобретения - увеличение длительной прочности и температуры эксплуатации до 610°C, а также увеличение срока службы изделий.

Указанный технический результат достигается тем, что теплостойкая сталь, содержащая углерод, кремний, марганец, молибден, ванадий, хром, титан, магний, алюминий, азот, бор, кальций, серу, железо, согласно изобретению дополнительно содержит цирконий и РЗМ при следующем соотношении компонентов, мас.%:

углерод 0,07-0,18
марганец 0,40-1,50
кремний 0,17-0,80
молибден 0,10-0,14
ванадий 0,15-0,45
хром 0,50-2,00
алюминий 0,005-0,012
азот 0,002-0,010
титан 0,002-0,060
цирконий 0,001-0,300
РЗМ 0,01-0,07
кальций 0,0003-0,0015
магний 0,0003-0,010
бор 0,001-0,007
сера 0,005-0,015
железо остальное

при соотношении (Ti+Al):N=3,5-10,0 и (Zr+В+0,5 РЗМ):Mo=0,07-2,5.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемая сталь отличается от известной введением циркония в количестве 0,001-0,3%, РЗМ в количестве 0,01-0,07%, причем сумма титана и алюминия находится в соотношении с азотом в пределах 3,5-10,0, циркония, бора и 0,5 РЗМ в соотношении с молибденом 0,07-2,5.

Сущность изобретения состоит в том, что сталь-прототип содержит титан и магний, а также подобраны такие соотношения сумм нитридообразующих ряда титан, алюминий к азоту, при которых происходит образование нитридных фаз этих элементов - титана, алюминия, вместо отрицательно влияющих на свойства нитридов ванадия и образование основной упрочняющей фазы - карбида ванадия.

Учитывая то, что цирконий, бор, РЗМ, хотя и являются нитридообразующими элементами, но их действие при наличии других нитридообразующих элементов, имеющих большее сродство к азоту, а также при определенной последовательности введения проявляется в этом случае в основном во влиянии на упрочнение твердого раствора, т.е. аналогичное влиянию молибдена. Поэтому и введено соотношение циркония, бора и 0,5 РЗМ к молибдену, которое соответствует 0,07-2,5 для получения стабильных характеристик прочности и пластичности. В этом случае превращение аустенита происходит в основном в бейнитной области с образованием структуры бейнита и феррита с равномерно распределенными карбидами ванадия основной упрочняющей фазы в объеме металла.

Указанное содержание углерода 0,07-0,18% и азота 0,002-0,010% необходимо и достаточно для образования упрочняющей карбидной фазы. Превышение верхнего содержания азота ведет к образованию нежелательных карбидных и карбонитридных фаз вместо карбидных, а углерода - к образованию излишнего количества карбидных фаз. Уменьшение содержания углерода за указанные пределы не обеспечивает получения достаточного количества упрочняющих фаз, а следовательно, и требуемого уровня прочности свойств. Получение азота ниже приведенного в промышленных условиях практически не достигается.

Введение молибдена и ванадия является обязательным с точки зрения обеспечения требуемого уровня свойств в сталях, работающих длительное время при повышенных температурах. Молибден и ванадий способствуют упрочнению твердого раствора и стабилизации упрочняющих фаз.

Превышение содержания ванадия за обозначенные пределы приводит к образованию избыточного количества карбидной фазы и выделению ее в виде скоплений, что приводит к понижению пластических характеристик. При снижении ванадия ниже 0,15% не обеспечивается необходимое количество карбидной фазы для получения требуемых прочностных свойств.

Введение алюминия свыше 0,012% приводит к образованию нитридов алюминия, уменьшение содержания алюминия менее 0,005% характеризует нераскисленность металла, а следовательно, его плохое качество.

Введение бора и циркония менее 0,001% каждого приводит к коагуляции карбидных фаз. При содержании бора свыше 0,007% образуется боридная эвтектика, наличие которой снижает пластические свойства стали. Увеличение содержания циркония свыше 0,300% отрицательно сказывается на технологичности стали.

Введение марганца и кремния необходимо для раскисления стали. При содержании в стали марганца и кремния менее 0,4 и 0,17% соответственно сталь оказывается недостаточно раскисленной, при превышении содержания марганца выше 1,5% и кремния 0,8% резко повышается в стали содержание неметаллических включений - силикатов марганца.

При введении хрома менее 0,5% не обеспечиваются необходимые требования по окалиностойкости стали, превышение содержания хрома более 2,0% приводит к образованию нежелательных включений - карбонитридов хрома.

РЗМ расходуются примерно поровну на образование неметаллических включений и на упрочнение твердого раствора. В присутствии РЗМ образуются сульфиды и оксиды округлой формы, равномерно распределенные в объеме металла, что существенно уменьшает влияние вредных примесей - серы и кислорода. При уменьшении количества РЗМ за указанные пределы образуются пленочные включения марганца FeS, MnS, как правило, располагающиеся по границам зерен и приводящие к ослаблению межзеренной связи и, соответственно, к преждевременному разрушению материала.

При превышении содержания РЗМ образуются скопления РЗМ, являющиеся концентраторами напряжений, т.е. наиболее ослабленными участками.

Введение кальция действует так же эффективно, как и РЗМ, на неметалллические включения, так и на измельчение структурных составляющих. Введение менее 0,0003% Ca неэффективно, т.к. не проявляется его влияние на структуру; введение его более 0,0015% увеличивает загрязнение стали неметаллическими включениями.

Большое значение на жаропрочные свойства оказывает величина зерна, которая определяется в первую очередь содержанием азота и алюминия в стали. Содержание азота в количестве 0,002-0,010% и алюминия от 0,005% до 0,012%, а также циркония и бора при влиянии их через твердый раствор способствует получению оптимальной структуры - определенного количества дисперсной упрочняющей фазы и необходимой величины зерна. При содержании в стали азота и алюминия свыше 0,010 и 0,012% соответственно образуется мелкое зерно, что, в свою очередь, отрицательно сказывается на времени до разрушения стали при повышенных температурах.

Введенный в сталь молибден в количестве 0,10-0,14% расходуется в основном для упрочнения твердого раствора. Однако молибден в этой стали распределяется как на упрочнение твердого раствора, так и на карбидные фазы - МЗС и МС. Введение молибдена менее 0,10% недостаточно для легирования твердого раствора, превышение его содержания более 0,14% в присутствии других аналогично влияющих элементов создает "жесткую" структуру, что явно нежелательно для получения требуемых свойств. Введение циркония и бора полностью не может компенсировать недостающее количество молибдена, т.к. эти элементы в большей степени могут расходоваться на образование соединений с азотом. Для предотвращения этого вводится титан как наиболее сильный элемент по отношению к азоту, тем самым способствуя цирконию и бору легировать твердый раствор. Распределение молибдена в этом случае будет производиться в основном между карбидными фазами и твердым раствором. Образуются устойчивые нитриды титана и упрочняющая дисперсная фаза MS на основе ванадия.

Введение титана менее 0,002% недостаточно для образования первичных нитридов титана, свыше 0,08% отрицательно влияет на превращение аустенита - способствует образованию ферритной составляющей в стали, что отрицательно сказывается на длительной прочности стали.

Введение магния способствует стабилизации твердого раствора, карбидной фазы и неметаллических включений, повышая тем самым свойства. Уменьшение его содержания в стали менее 0,0003% недостаточно для эффективного воздействия на свойства стали, превышение его содержания свыше 0,0010% приводит к неравномерному выделению образующихся фаз.

Содержание серы менее 0,005% возможно только в случае применения специальных технологических приемов, но они приводят к удорожанию стали. При превышении содержания серы более 0,015% образуются грубые сульфидные включения, которые отрицательно влияют на качество металла особенно при прокатке труб.

При содержании в стали 0,002-0,010% N, 0,005-0,012% Al и 0,10-0,14% Mo при наличии титана, циркония, бора, РЗМ, алюминия в определенных соотношениях (Ti+Al):N=3,5-10,0 и (Zr+В+0,5 РЗМ):Mo=0,07-2,5 получается оптимальная структура, обеспечивающая после рекомендуемой термической обработки требуемые свойства длительной прочности, пластичности и рабочей температуры до 610°C.

При нарушения соотношения (Ti+Al):N=3,5-10,0 изменяется структура стали: при соотношении менее 3,5 наблюдаются грубые пограничные выделения фаз, в случае соотношения более 10,0 присутствуют скопления грубых выделений этих фаз. Такие нарушения как в первом, так и во втором случаях отрицательно сказываются на свойствах стали, в основном длительных.

Выполнение соотношения (Zr+В+0,5 РЗМ):Mo=0,07-2,5 необходимо в связи с тем, что при уменьшении этого соотношения твердый раствор будет недолегирован, что приводит к уменьшению рабочей температуры ниже 610°C. Превышение этого соотношения приводит к нарушению стехиометрического соотношения, что в свою очередь также отрицательно повлияет на свойства.

Предлагаемые соотношения элементов в стали были найдены экспериментальным путем и являются оптимальными, поскольку позволяют получить комплексный технический эффект, указанный в целевой части формулы предлагаемого изобретения. При нарушении соотношений элементов ухудшаются свойства стали, наблюдается их нестабильность и комплексный эффект не достигается.

Ниже приведены варианты осуществления и использования изобретения, не исключающие другие варианты в объеме формулы изобретения (см. Таблицы 1 и 2).

Пример 1

Металл состава 1 (таблица 1) получают следующим образом. В сталеплавильной печи, например в электропечи, выплавляют полупродукт с содержанием углерода 0,07% и серы 0,003%. Металл легируют молибденом на 0,10%. Затем выпускают в ковш, где легируют марганцем на 0,40% и хромом на 0,5%. После выпуска замеряют температуру металла и его вакуумируют циркуляционным способом в течение 20 минут при остаточном давлении до 10-5 мбара. В конце вакуумирования присаживают кремний на 0,17,% алюминий на 0,005% и ванадий на 0,15%), цирконий на 0,001%. После вакуумирования металл разливают. В процессе разливки в жидкую сталь присаживают ферротитан на 0,002, бор на 0,001%, силикокальциймагниевую лигатуру на 0,0003% Ca и 0,0003% M, под струю вводят РЗМ на 0,01%. Через 5-6 минут отбирают пробы металла на химанализ. При необходимости производится корректировка состава путем ввода добавок требуемых элементов. При достижении заданного состава и соотношения (Ti+Al):N=3,5 и (Zr+B+0,5 РЗМ):Mo=0,07, а также требуемой температуры ковш с металлом передают на разливку.

Аналогичным способом выплавляют другие плавки, составы которых указаны в таблице 1.

Как видно из таблиц 1 и 2, сталь, удовлетворяющая заявляемому составу (пл.1-3), имеет высокие служебные характеристики, длительную прочность и температуру эксплуатации 610°C. Сталь-прототип (пл.9-12) и сталь, выходящая за пределы заявляемого (пл.4-8), не имеют свойств, необходимых для достижения технического результата изобретения.

Таблица 2
Результаты испытаний на длительную прочность при различных температурах
Марка стали Предел текучести, σ0,2 МПа Предел длительной прочности за 105 часа, МПа
Температура, °C Температура, °C
400 450 500 540 550 570 600 610
Сталь по прототипу (плавка 9) 216 206 170 110 99 80 56 -
Предложенная сталь (плавка 3) 355 320 195 135 120 105 86 75

Теплостойкая сталь, содержащая углерод, кремний, марганец, молибден, ванадий, хром, титан, магний, алюминий, азот, бор, кальций, серу, железо, отличающаяся тем, что она дополнительно содержит цирконий и РЗМ при следующем соотношении компонентов, мас.%: при соотношении (Ti+Al):N=3,5-10,0 и(Zr+В+0,5 РЗМ):Мо=0,07-2,5.
Источник поступления информации: Роспатент

Showing 241-250 of 312 items.
11.03.2019
№219.016.dbc8

Расплав на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности нанесения покрытий из расплавов на основе цинка на стальную полосу. Расплав содержит 0,003-0,03 мас.% индия, 0,84-5,24 мас.% алюминия, 0,6-3,74 мас.% магния при соотношении алюминия к магнию 1,4:1, и цинк -...
Тип: Изобретение
Номер охранного документа: 0002470088
Дата охранного документа: 20.12.2012
11.03.2019
№219.016.ddde

Способ дифференциальной диагностики респираторных вирусных инфекций методом мультиплексной пцр с детекцией в режиме реального времени и перечень последовательностей для его осуществления

Изобретение относится к биотехнологии, медицинской вирусологии, молекулярной биологии и эпидемиологии. Описан способ дифференциальной диагностики респираторных вирусных инфекций методом мультиплексной обратной транскрипции и ПЦР с детекцией в режиме реального времени. Способ предусматривает...
Тип: Изобретение
Номер охранного документа: 0002460803
Дата охранного документа: 10.09.2012
13.03.2019
№219.016.dea3

Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных нефтепромысловых труб. Сталь содержит компоненты при следующем соотношении, маc.%: углерод 0,05-0,25, марганец...
Тип: Изобретение
Номер охранного документа: 0002681588
Дата охранного документа: 11.03.2019
20.03.2019
№219.016.e975

Электрогидравлический следящий привод

Изобретение относится к области гидроавтоматики и гидропривода и может быть использовано, например, в системах управления объектов с высокими динамическими свойствами при воздействии на них электромагнитных помех, повышенной радиации и работе во взрывоопасных помещениях. Привод содержит...
Тип: Изобретение
Номер охранного документа: 0002467214
Дата охранного документа: 20.11.2012
21.03.2019
№219.016.ec1c

Способ получения дробленого углеродного адсорбента из полимерного сырья

Изобретение относится к области получения активных углей. Предложен способ получения дробленого углеродного адсорбента из полимерного сырья, включающий смешение фурфурола с эпоксидной смолой и серной кислотой, отверждение путем нагревания композиции до 150-170°С с выдержкой в течение 12-15...
Тип: Изобретение
Номер охранного документа: 0002404919
Дата охранного документа: 27.11.2010
29.03.2019
№219.016.f7b4

Композиционный слоистый резинотканевый защитный материал на основе бутадиен-нитрильного каучука с барьерным слоем

Изобретение относится к средствам защиты, а именно к композиционным слоистым резинотканевым защитным материалам на основе бутадиен-нитрильного каучука с барьерным слоем, и может быть использовано для защиты от отравляющих и химических веществ. Композиционный слоистый резинотканевый защитный...
Тип: Изобретение
Номер охранного документа: 0002469866
Дата охранного документа: 20.12.2012
01.04.2019
№219.016.fa3d

Способ формирования градиентного покрытия методом лазерной наплавки

Изобретение относится к способу формирования функционально-градиентного покрытия селективной лазерной наплавкой. В фокус лазерного излучения подают порошковый материал по крайней мере из двух автономно работающих дозаторов, в одном из которых находится порошок с низкой микротвердостью (менее...
Тип: Изобретение
Номер охранного документа: 0002683612
Дата охранного документа: 29.03.2019
10.04.2019
№219.017.06e3

Огнестойкий теплоизоляционный конструкционный материал

Изобретение относится к противопожарной технике и касается огнестойкого теплоизоляционного конструкционного материала. Материал включает базальтовые волокна, связующее и наполнитель, дополнительно содержит микростеклосферы при следующем соотношении компонентов, мас.%: Изобретение позволяет...
Тип: Изобретение
Номер охранного документа: 0002424021
Дата охранного документа: 20.07.2011
10.04.2019
№219.017.074a

Аустенитная высокопрочная коррозионно-стойкая сталь и способ ее выплавки

Изобретение относится к области металлургии, в частности к составу аустенитной высокопрочной коррозионно-стойкой стали и способу ее выплавки. Аустенитная высокопрочная коррозионно-стойкая сталь содержит следующие компоненты, мас.%: углерод 0,04-0,05; хром 19,5-20,5; никель 4,5-5,5; марганец...
Тип: Изобретение
Номер охранного документа: 0002456365
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.2e02

Способ определения локальной концентрации остаточных микронапряжений в металлах и сплавах

Изобретение относится к области рентгенографических способов исследования тонкой структуры и может быть использовано для неразрушающего контроля внутренних напряжений с целью выявления признаков опасности развития хрупкого разрушения металлических деталей и изделий. Способ определения локальной...
Тип: Изобретение
Номер охранного документа: 0002390763
Дата охранного документа: 27.05.2010
Showing 241-250 of 259 items.
01.03.2019
№219.016.cb81

Способ криогенно-деформационной обработки стали

Изобретение относится к области черной металлургии, конкретнее к способам обработки коррозионно-стойких аустенитных сталей, и может быть использовано, например, для изготовления тяжелонагруженных деталей в машиностроении. Для получени стали с высокими прочностными характеристиками,...
Тип: Изобретение
Номер охранного документа: 0002394922
Дата охранного документа: 20.07.2010
01.03.2019
№219.016.d004

Жаропрочный хромоникелевый сплав с аустенитной структурой

Изобретение относится к области металлургии, в частности к жаропрочным хромоникелевым сплавам с аустенитной структурой, и может быть использовано при изготовлении отливок для коллекторов и реакционных труб печей риформинга крупнотоннажных агрегатов аммиака и метанола с температурой эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002446223
Дата охранного документа: 27.03.2012
20.03.2019
№219.016.e6f6

Способ определения остаточного ресурса труб тепловых сетей

Предлагаемое изобретение относится к области технического обслуживания и эксплуатации сосудов и трубопроводов давления, преимущественно в теплоэнергетике, и может быть использовано при оценке остаточного ресурса металла трубопровода, работающего в условиях длительного воздействия постоянных и...
Тип: Изобретение
Номер охранного документа: 0002366920
Дата охранного документа: 10.09.2009
29.03.2019
№219.016.f3c5

Способ гидравлических испытаний трубопроводов тепловых сетей повышенным давлением

Изобретение относится к области технического обслуживания и эксплуатации сосудов и трубопроводов давления, преимущественно в теплоэнергетике, и служит для выявления наиболее опасных с точки зрения разрушения участков тепловых сетей. Изобретение позволяет определить момент разрушения...
Тип: Изобретение
Номер охранного документа: 0002364849
Дата охранного документа: 20.08.2009
29.03.2019
№219.016.f57f

Конструкция двухручьевого ковша с камерами для плазменного подогрева жидкого металла

Изобретение относится к металлургии, конкретнее к непрерывной разливке металла на машине непрерывного литья заготовок. Промежуточный двухручьевой ковш содержит две камеры для плазменного подогрева металла, приемный и разливочный отсеки, разделенные перегородками с переливными каналами....
Тип: Изобретение
Номер охранного документа: 0002454295
Дата охранного документа: 27.06.2012
04.04.2019
№219.016.fcc2

Способ обработки высокопрочной аустенитной стали

Изобретение относится к области черной металлургии, конкретнее, к способам обработки высокопрочных аустенитных сталей и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении. Техническим результатом изобретения является получение наноструктурного...
Тип: Изобретение
Номер охранного документа: 0002451754
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.2e02

Способ определения локальной концентрации остаточных микронапряжений в металлах и сплавах

Изобретение относится к области рентгенографических способов исследования тонкой структуры и может быть использовано для неразрушающего контроля внутренних напряжений с целью выявления признаков опасности развития хрупкого разрушения металлических деталей и изделий. Способ определения локальной...
Тип: Изобретение
Номер охранного документа: 0002390763
Дата охранного документа: 27.05.2010
19.04.2019
№219.017.2efc

Способ определения критерия сопротивления металлов и сплавов хрупкому разрушению

Использование: для определения критерия сопротивления металлов и сплавов хрупкому разрушению. Сущность заключается в том, что определение критерия сопротивления металлов и сплавов хрупкому разрушению осуществляют путем оценки значений локальной концентрации остаточных микронапряжений,...
Тип: Изобретение
Номер охранного документа: 0002383006
Дата охранного документа: 27.02.2010
20.04.2019
№219.017.3501

Высокодемпфирующая сталь с регламентированным уровнем демпфирующих свойств и изделие, выполненное из неё

Изобретение относится к области металлургии, а именно к сталям, обладающим высокой демпфирующей способностью, а также к изделиям, выполненным из них, и может быть использовано при изготовлении холодно- и горячекатаных листов, сортового проката, прутков и поковок, используемых в качестве...
Тип: Изобретение
Номер охранного документа: 0002685452
Дата охранного документа: 18.04.2019
29.05.2019
№219.017.68dc

Аустенитная коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к составам коррозионно-стойких аустенитных сталей, предназначенных для производства листовых и трубных деталей, сварных конструкций, контактирующих с кипящей азотной кислотой. Сталь содержит углерод, кремний, марганец, хром, никель, азот,...
Тип: Изобретение
Номер охранного документа: 0002432413
Дата охранного документа: 27.10.2011
+ добавить свой РИД