×
10.02.2013
216.012.2452

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ НЕГЕРМЕТИЧНОСТИ АГРЕГАТОВ, ИМЕЮЩИХ ПОДВИЖНЫЕ ЭЛЕМЕНТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытательной техники и может быть использовано для определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов, и направлено на повышение точности определения значения негерметичности агрегатов, что обеспечивается за счет того, что определяют негерметичность с использованием показаний датчика перепада давления, при этом согласно изобретению момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени. 2 ил.
Основные результаты: Способ определения негерметичности агрегатов, имеющих подвижные элементы, работающие в условиях вибровоздействия, заключающийся в определении негерметичности агрегата с использованием показаний датчика перепада давления, отличающийся тем, что момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени.

Предлагаемое изобретение относится к области испытательной техники, а именно к способам определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов.

Известны технические решения, где испытания цельных или с неподвижными соединениями изделий на герметичность осуществляется путем соединения ресивера, объем которого выбирают из условия обеспечения выделения пузырьков при допустимой утечке из изделия известного объема с заданной погрешностью, с трубкой барбатера, подключения к изделию упругой емкости, расположенной в газовой камере, соединения камеры с воздушной полостью барбатера, одновременного заполнения под контрольным давлением жидкостью изделия и упругой емкости, а газом ресивера, барбатера и камеру, регистрации выделяющихся из трубки барбатера пузырьков газа, по которым судят о негерметичности изделия, после заполнения жидкостью изделия ему сообщают выбрацию до окончания регистрации выделяющихся из трубки барбатера пузырьков газа (см. патент RU №2308691, кл. G01M 3/16, 2007 г.).

Однако этот способ контроля герметичности изделий не эффективен по следующим причинам.

В указанном изобретении изделие подвергается вибрации, т.е. неправомерно ухудшается его техническое состояние, т.к. реально при эксплуатации оно может не подвергаться такому воздействию.

Этот способ малоэффективен при испытании изделий с подвижными элементами и имеющими внутри себя газовые рабочие тела, так как для их испытаний необходимо иметь очень большие объемы ресивера.

И наконец, этот способ не применим для изделий с подвижными элементами, например, предохранительных клапанов баков ракет, которые реально работают в условиях вибрации, в результате чего могут возникнуть большие значения негерметичности, особенно в случае резонанса, когда частота вынужденных частот вибраций совпадает с собственной частотой подвижных элементов испытываемых изделий и когда небходимо знать конкретно в определенный период времени эту негерметичность в зависимости от значений виброперегрузок.

Наиболее близким из известных технических решений является выбранный в качестве прототипа способ определения негерметичности агрегатов, заключающийся в определении негерметичности агрегата по изменению перепада давления с помощью датчика (см. патент РФ №2253852, кл. G01M 3/00, 1992 г.).

При реализации этого способа создают разность между давлением внутри объекта, например емкости, и давлением вокруг нее и по изменению одного из давлений судят о том, удовлетворяет ли емкость заданным условиям контроля или нет, при этом сначала запоминают контрольное значение давления, когда совпадают случайные обусловленные разностью давлений деформации на емкость, и после этого производят сравнение давления с контрольным значением.

Недостатком указанного способа является то, что он не предназначен для определения значения негерметичности агрегата при динамических режимах его работы и особенно при резонансных явлениях в зависимости от воздействующих факторов, так как в не увязывает момент начала действия воздействующего фактора, в частности виброперегрузки, и функционирования системы регистрации изменения давления в дренажной емкости, например, датчиком перепада давления совместно со вторичной аппаратурой.

Техническим результатом, на который направлено данное решение, является повышение точности определения значения негерметичности агрегатов при вибровоздействии, в том числе при резонансах его подвижных элементов.

Указанный технический результат достигается тем, что в предлагаемом способе определения негерметичности агрегатов, имеющих подвижные элементы, работающих в условиях вибровоздействия, заключающемся в определении негерметичности агрегатов по изменению перепада давления с помощью датчика, датчик перепада давления соединяют с системой дренажа агрегата, при этом момент начала работы программы вибростенда по вибровоздействию и работы датчика синхронизируют по времени, выбирают показания перепада давления от начала повышения давления и его конца и судят о негерметичности агрегата по величине расхода газа, используя известные зависимости и соответствующий диапазон частот виброперегрузок.

Предложенный способ для повышения точности определения величины газа, выделяющегося из-за негерметичности подвижных элементов агрегата при вибрации, особенно в области резонансных явлений, поясняется иллюстрациями, где на фиг.1 показана принципиальная схема установки, с помощью которой реализуется указанный способ, а на фиг.2 представлен график изменения перепада давления и перегрузки в зависимости от времени и частоты вибрации.

Работа установки (см. фиг.1) при определении негерметичности агрегата осуществляется следующим образом.

Объект испытаний 1 устанавливается на оснастку 2, которая крепится на вибростенде 3.

Объект испытаний 1 связан с источником газа 4, обеспечивающим газом внутреннюю полость объекта испытании 1, и связан газовой магистралью с емкостью 5, куда в случае негерметичности объекта происходит истечение газа.

Датчик перепада давления 6 соединен газовой трубкой с емкостью 5, куда истекает газ, и измеряет величину этого истечения. Информация от датчика перепада давления, а так же параметры изменения виброперегрузки преобразуются вторичной системой измерения 7. Система управления 8 обеспечивает программу заданного изменения виброперегрузок по времени, воздействующей на объект испытания. Синхронизация включения момента измерения перепада давления датчиком и моментом включения программы реализации закона изменения частоты и перегрузки осуществляется системой синхронизации по времени 9. Контроль и измерение заданных по программе значений виброперегрузок осуществляется датчиком 10, установленным вблизи крепления объекта испытаний на оснастке.

В отличие от прототипа предлагаемый способ имеет дело с довольно значительными величинами негерметичности в связи с тем, что, во-первых, в системе существуют подвижные элементы, и, во-вторых, при воздействии вибрации негерметичность может увеличиваться, а в случае резонанса становится значительной. Поэтому, чтобы зафиксировать начало роста негерметичности агрегата, например, тарели предохранительного клапана, время его действия, конец роста в зависимости от воздействующего фактора, в частности виброперегрузки, в заявочных материалах предложено момент начало работы программы вибростенда и работы датчика синхронизировать (см. фиг.2), где А - момент начала реализации программы закона. Таким образом, количество газа, выделяющегося из-за негерметичности подвижных частей агрегата за отмеченный промежуток времени, определяется исходя из зависимости (см. М.: Машиностроение, 1985 г. Вакуумная техника. Справочник. Авторы: Е.С.Фролов и др., стр.21)

,

отсюда

,

где ΔP1 - перепад давления - определяется из графика (фиг.2),

V0 - объем емкости, куда исткает газ (объем известен),

R - газовая постоянная используемого газа при испытании (известна),

Т - температура газа (известна)

Зная указанные выше значения параметров, определяем расход (негерметичность в единицу времени).

Средний расход газа за фиксируемый промежуток времени определяем следующим образом

,

Δτ - промежуток времени, соответствующий росту перепада давления ΔР1.

Gгаза - количество газа, выделяемое из-за негерметичности за отмеченный промежуток времени.

Одновременно определяется диапазон частот и перегрузок , в области которых определена негерметичность. В соответствии с полученными результатами делается вывод о влиянии частоты и виброперегрузок на герметичность агрегата при заданном давлении внутри него.

Принципиальная схема установки, на которой осуществляется реализация указанного способа, представлена на фиг.1, где

1. Агрегат-объект испытаний

2. Оснастка

3. Вибростенд

4. Источник давления газа

5. Емкость, куда идет истечение газа из-за негерметичности

6. Датчик перепада давления

7. Вторичная система измерения давления

8. Система управления и задания параметров стенда

9. Система синхронизации по времени

10. Вибродатчик

Таким образом, благодаря данному способу повышается точность определения значения негерметичности агрегатов при вибровоздействии, в том числе при резонансах его подвижных элементов.

Способ определения негерметичности агрегатов, имеющих подвижные элементы, работающие в условиях вибровоздействия, заключающийся в определении негерметичности агрегата с использованием показаний датчика перепада давления, отличающийся тем, что момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени.
СПОСОБ ОПРЕДЕЛЕНИЯ НЕГЕРМЕТИЧНОСТИ АГРЕГАТОВ, ИМЕЮЩИХ ПОДВИЖНЫЕ ЭЛЕМЕНТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ НЕГЕРМЕТИЧНОСТИ АГРЕГАТОВ, ИМЕЮЩИХ ПОДВИЖНЫЕ ЭЛЕМЕНТЫ
Источник поступления информации: Роспатент

Showing 71-80 of 105 items.
13.01.2017
№217.015.897b

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД,...
Тип: Изобретение
Номер охранного документа: 0002602464
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b78b

Турбонасосный агрегат

Изобретение относится к турбонасосостроению и может быть использовано в турбонасосных агрегатах (ТНА) ЖРД верхних ступеней ракет многоразового включения. ТНА включает входной патрубок (1) пониженного давления, корпус (2) с размещенными в нем на валу центробежным насосом (3) и турбиной (4),...
Тип: Изобретение
Номер охранного документа: 0002614911
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c989

Входной патрубок газовой турбины

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Входной патрубок газовой турбины содержит кольцевой газовый коллектор, корпус турбины и центральную...
Тип: Изобретение
Номер охранного документа: 0002619439
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.e24c

Устройство преобразования ионного тока спектрометра ионной подвижности

Изобретение относится к спектрометрии ионной подвижности, позволяющей обнаруживать сверхмалые количества взрывчатых, наркотических, опасных и токсичных веществ, проводить медицинские исследования, а также обеспечивать контроль качества продуктов питания, строительных и промышленных материалов....
Тип: Изобретение
Номер охранного документа: 0002625805
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f152

Устройство формирования напряжения на защитной сетке коллектора ионного тока спектрометра ионной подвижности

Изобретение относится к спектрометрам ионной подвижности, которые находят широкое применение для контроля содержания различных веществ в воздухе и, в частности, для обнаружения малых концентраций взрывчатых, наркотических, опасных и токсичных веществ, проведения медицинской диагностики,...
Тип: Изобретение
Номер охранного документа: 0002638824
Дата охранного документа: 18.12.2017
19.01.2018
№218.016.02ef

Способ сварки трением с перемешиванием и устройство для его осуществления

Изобретение может быть использовано при сварке трением с перемешиванием. В процессе сварки осуществляют слежение и регулирование загрузки перемещаемого сварочного инструмента по давлению загрузки. Осуществляют контроль расположения свариваемых кромок относительно подкладного элемента, раскрытия...
Тип: Изобретение
Номер охранного документа: 0002630147
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1169

Центробежная турбина

Изобретение относится к области ракетного двигателестроения и может быть использовано в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей с продолжительным временем работы при использовании любых компонентов топлива, как высококипящих, так и низкокипящих. Центробежная турбина...
Тип: Изобретение
Номер охранного документа: 0002633974
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.2000

Жидкостный ракетный двигатель малой тяги

Изобретение относится к двигателестроению и может быть использовано в конструкции жидкостных ракетных двигателей малой тяги (ЖРДМТ). ЖРДМТ, содержащий камеру 1, смесительную головку с внутренним днищем 2, осевую центробежную форсунку 3, периферийный пояс струйных форсунок 4, кольцевой...
Тип: Изобретение
Номер охранного документа: 0002641323
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.44c0

Лабиринтное уплотнение-демпфер газовой турбины

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Лабиринтное уплотнение-демпфер для гашения энергии колебаний вращающегося в бесконтактных подшипниках ротора...
Тип: Изобретение
Номер охранного документа: 0002650013
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.5cc5

Способ дросселирования тяги жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Способ дросселирования тяги ЖРД, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при котором после уменьшения массовых расходов ниже заданных значений подают газ в полости магистралей питания камеры на...
Тип: Изобретение
Номер охранного документа: 0002656073
Дата охранного документа: 30.05.2018
Showing 71-80 of 82 items.
13.01.2017
№217.015.897b

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД,...
Тип: Изобретение
Номер охранного документа: 0002602464
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b78b

Турбонасосный агрегат

Изобретение относится к турбонасосостроению и может быть использовано в турбонасосных агрегатах (ТНА) ЖРД верхних ступеней ракет многоразового включения. ТНА включает входной патрубок (1) пониженного давления, корпус (2) с размещенными в нем на валу центробежным насосом (3) и турбиной (4),...
Тип: Изобретение
Номер охранного документа: 0002614911
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c989

Входной патрубок газовой турбины

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Входной патрубок газовой турбины содержит кольцевой газовый коллектор, корпус турбины и центральную...
Тип: Изобретение
Номер охранного документа: 0002619439
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.e24c

Устройство преобразования ионного тока спектрометра ионной подвижности

Изобретение относится к спектрометрии ионной подвижности, позволяющей обнаруживать сверхмалые количества взрывчатых, наркотических, опасных и токсичных веществ, проводить медицинские исследования, а также обеспечивать контроль качества продуктов питания, строительных и промышленных материалов....
Тип: Изобретение
Номер охранного документа: 0002625805
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f152

Устройство формирования напряжения на защитной сетке коллектора ионного тока спектрометра ионной подвижности

Изобретение относится к спектрометрам ионной подвижности, которые находят широкое применение для контроля содержания различных веществ в воздухе и, в частности, для обнаружения малых концентраций взрывчатых, наркотических, опасных и токсичных веществ, проведения медицинской диагностики,...
Тип: Изобретение
Номер охранного документа: 0002638824
Дата охранного документа: 18.12.2017
19.01.2018
№218.016.02ef

Способ сварки трением с перемешиванием и устройство для его осуществления

Изобретение может быть использовано при сварке трением с перемешиванием. В процессе сварки осуществляют слежение и регулирование загрузки перемещаемого сварочного инструмента по давлению загрузки. Осуществляют контроль расположения свариваемых кромок относительно подкладного элемента, раскрытия...
Тип: Изобретение
Номер охранного документа: 0002630147
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1169

Центробежная турбина

Изобретение относится к области ракетного двигателестроения и может быть использовано в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей с продолжительным временем работы при использовании любых компонентов топлива, как высококипящих, так и низкокипящих. Центробежная турбина...
Тип: Изобретение
Номер охранного документа: 0002633974
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.2000

Жидкостный ракетный двигатель малой тяги

Изобретение относится к двигателестроению и может быть использовано в конструкции жидкостных ракетных двигателей малой тяги (ЖРДМТ). ЖРДМТ, содержащий камеру 1, смесительную головку с внутренним днищем 2, осевую центробежную форсунку 3, периферийный пояс струйных форсунок 4, кольцевой...
Тип: Изобретение
Номер охранного документа: 0002641323
Дата охранного документа: 17.01.2018
04.10.2018
№218.016.8e5b

Способ контроля расходной характеристики устройств дифференциально-предохранительных и установка для осуществления способа

Изобретение относится к испытательной технике, конкретнее к области изготовления и эксплуатации устройств дифференциально-предохранительных (УДП), используемых для предохранения от разрушения топливных магистралей и емкостей (баков) с совмещенными днищами, содержащих агрессивные и...
Тип: Изобретение
Номер охранного документа: 0002668628
Дата охранного документа: 02.10.2018
20.02.2019
№219.016.c374

Способ поджига коронного разряда в ионном источнике спектрометра ионной подвижности

Изобретение относится к спектрометрии ионной подвижности, применяемой в приборах для контроля газообразных примесей в воздухе. Способ основан на использовании импульсного источника коронного разряда, содержащего не менее одной пары поджигающих электродов, высоковольтный импульсный генератор...
Тип: Изобретение
Номер охранного документа: 0002439738
Дата охранного документа: 10.01.2012
+ добавить свой РИД