×
17.06.2023
223.018.7f77

Результат интеллектуальной деятельности: Криосистема авиационной интегрированной электроэнергетической установки на основе ВТСП

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам, предназначенным для обеспечения криогенного охлаждения высокотемпературных сверхпроводящих (ВТСП) устройств. Криосистема авиационной интегрированной электроэнергетической установки на основе высокотемпературной сверхпроводимости содержит бак с крышкой, на которой смонтированы средства для контроля давления и температуры криосистемы и патрубки для подачи рабочего хладагента и подачи инертного газа для поддержания в баке стандартного атмосферного давления; по меньшей мере, один охлаждающий контур, включающий магистраль подачи рабочего хладагента со средством для нагнетания упомянутого хладагента в магистраль и средствами контроля температуры, давления и расхода рабочего хладагента; возвратную магистраль со средствами контроля температуры, давления и расхода рабочего хладагента; магистраль вакуумной откачки; пластинчатый теплообменник, установленный в баке. Пластины теплообменника размещены с образованием двух камер. Магистраль подачи рабочего хладагента подключена к первой камере, магистраль вакуумной откачки подключена ко второй камере, снабженной дроссельной заслонкой. Предложенная криосистема позволяет обеспечить стабильную подачу рабочего хладагента потребителям, повысить эффективность охлаждения и уменьшить расход рабочего хладагента. 6 з.п. ф-лы, 1 ил.

Область техники

Изобретение относится к устройствам, предназначенным для обеспечения криогенного охлаждения высокотемпературных сверхпроводящих (ВТСП) устройств, таких, как авиационные интегрированные электроэнергетические установки для поддержания заданного уровня температур (криостатирования), например, ВТСП-генератора, ВТСП-электродвигателя, ВТСП-кабеля и ВТСП токоограничительных устройств (далее ВТСП-ТОУ).

Уровень техники

В заявке KR20160137125 раскрывается система охлаждения для сверхпроводящего устройства, включающая резервуар с находящейся внутри криогенной жидкостью и газом, в котором размещено сверхпроводящее устройство, бак для охлаждения криогенной жидкости, циркуляционный контур, включающий магистраль подачи хладагента потребителю, по которой криогенная жидкость поступает от бака для охлаждения к потребителю (резервуару с хладагентом с размещенным в нем ВТСП устройством) и возвратную магистраль, отправляющую хладагент обратно в бак, а также резервуар высокого давления для повышения давления газа, содержащегося в резервуаре, в котором размещено сверхпроводящее устройство, и нагреватель. Резервуар высокого давления и нагреватель позволяют регулировать температуру и давление хладагента. Данная система подходит для охлаждения большого сверхпроводящего устройства, такого как устройство накопления энергии, сверхпроводящий ограничитель тока, сверхпроводящий магнит, трансформатор и пр.

Внутри бака для охлаждения хладагента может быть установлен теплообменник, к которому подведены магистрали подвода хладагента и возвратная магистраль. Перекачка хладагента через теплообменник осуществляется с помощью циркуляционных насосов, а сам теплообменник имеет трубчатую форму.

Как следует из описания заявки, такая система охлаждения обеспечивает однородность и стабильность температуры за счет обеспечения циркуляции переохлажденного хладагента.

Данная система требует криорефрижератора для компенсации тепловых потерь, что существенно ограничивает холодопроизводительность криосистемы и повышает массу оборудования. Также к существенным недостаткам предложенной реализации можно отнести то, что охлаждаемый сверхпроводниковый объект находится в одной емкости с основным запасом хладагента, в то время как в двигателе сверхпроводниковые обмотки находятся в ограниченном объеме, и запас хладагента обычно располагается во внешнем резервуаре.

Кроме того, данная криосистема не позволит одновременно эффективно охлаждать несколько независимых сверхпроводящих устройств.

Наиболее близкое техническое решение раскрывается в патенте RU №2616147. Система криообеспечения в соответствии с данным патентом содержит расходный криостат и дренажную магистраль с установленным вентилем, подогревателем паров азота и вакуумным насосом, систему подачи газообразного гелия в криостат и его барботирования через криогенную жидкость в емкости. Расходный криостат данной системы выполнен с трубопроводом дренажа криостата, магистралью подачи криогенной жидкости в ВТСП ротор электрической машины, возвратной магистралью и снабжен датчиками давления, уровня криогенной жидкости, сплошности среды. Кроме того, в расходном криостате системы криообеспечения может быть установлен теплообменник, а подача криогенной жидкости осуществляется с помощью установленного на магистрали подачи криогенного насоса.

К недостаткам известного устройства можно отнести использование криорефрижератора для компенсации тепловых потерь, который существенно увеличивает массу криосистемы, имея при этом ограниченную холодопроизводительность. Исходя из схематического изображения криосистемы, для ее работы требуется перепад высот между криосистемой и охлаждаемым объектом, что не всегда может быть реализовано при применении криосистемы для охлаждения двигателя на транспортном средстве. Также приведенное устройство рассчитано на охлаждение только одного потребителя, и даже при установке второго циркуляционного насоса применение криорефрижератора для компенсации тепловых потерь не позволяет регулировать глубину переохлаждения каждого потребителя независимо, поскольку криорефрижератор переохлаждает весь запас хладагента в баке.

Данные недостатки известной системы могут создать определенные технические проблемы.

Техническим результатом использования предлагаемого изобретения является увеличение эффективности и надежности поддержания заданного уровня температур в ВТСП обмотках электрических машин на различных стадиях работы.

Раскрытие сущности изобретения.

Задачей изобретения является устранение выявленных технических проблем и позволяет решить задачу изобретения - повышение эффективности охлаждения и снижение расхода хладагента при охлаждении нескольких потребителей.

Поставленная задача решается тем, что криосистема авиационной интегрированной электроэнергетической установки на основе высокотемпературной сверхпроводимости, содержит:

бак с крышкой, на которой смонтированы средства для контроля давления и температуры криосистемы и патрубки для подачи рабочего хладагента и подачи инертного газа для поддержания в баке стандартного атмосферного давления;

по меньшей мере, один охлаждающий контур, включающий магистраль подачи рабочего хладагента со средством для нагнетания упомянутого хладагента в магистраль и средствами контроля температуры, давления и расхода рабочего хладагента;

возвратную магистраль со средствами расхода рабочего хладагента;

магистраль вакуумной откачки;

пластинчатый теплообменник, установленный в упомянутом баке, в котором пластины теплообменника размещены с образованием двух камер, где магистраль подачи рабочего хладагента подключена к одной камере, магистраль вакуумной откачки подключена к другой камере, снабженной на входе в эту камеру дроссельной заслонкой.

В частных воплощениях изобретения поставленная задача решается тем, что в заявленной криосистеме рабочим хладагентом является жидкий азот.

В частных воплощениях изобретения инертным газом для поддержания в баке стандартного атмосферного давления является газообразный гелий.

В заявленной криосистеме средство для нагнетания рабочего хладагента может представлять собой центробежный крионасос, размещенный в баке и подключенный к мотору, размещенному на крышке бака.

В заявленной криосистеме средство для контроля расхода рабочего хладагента может представлять собой трубку Вентури.

Бак в заявленной криосистеме может представлять собой сосуд с двойными стенками с размещенной между ними теплоизоляцией.

Криосистема может включать два охлаждающих контура.

На фиг. 1 приведена схема заявленного устройства.

Позиции означают следующее:

1. Бак.

2. Рабочий хладагент.

3. Крышка.

4. Два независимых охлаждающих контура (на фиг. 1 ограничены замкнутыми штриховыми линиями).

5. Датчик давления в криосистеме.

6. Датчик температуры в криосистеме.

7. Патрубок для подачи рабочего хладагента.

8. Патрубок для подачи инертного газа для поддержания стандартного давления.

9. Весовая платформа.

10. Мотор.

11. Центробежный крионасос.

12. Пластинчатый теплообменник.

13. Магистраль подачи хладагента потребителю.

14. Трубка Вентури для измерения расхода хладагента в магистрали подачи.

15. Датчик температуры хладагента в магистрали подачи.

16. Датчик давления хладагента в магистрали подачи.

17. Возвратная магистраль.

18. Трубка Вентури для измерения расхода хладагента в возвратной магистрали.

19. Датчик температуры хладагента в возвратной магистрали.

20. Датчик давления хладагента в возвратной магистрали.

21. Дроссельная заслонка.

22. Автоматический привод.

23. Магистраль вакуумной откачки.

24. Датчик температуры переохлажденного рабочего хладагента.

25. Датчик давления переохлажденного рабочего хладагента.

Сущность изобретения состоит в следующем.

Криосистема в соответствии с изобретением создана для обеспечения криогенного охлаждения сверхпроводниковых компонентов авиационной интегрированной электроэнергетической установки, а именно ВТСП-генератора, ВТСП-электродвигателя, ВТСП-кабеля и ВТСП-ТОУ.

Криосистема состоит из бака (1) (см. фиг. 1), заполненного рабочим хладагентом (2). На бак установлена крышка (3) и в баке смонтированы два независимых охлаждающих контура (4) (позиции элементов на фиг. 1 указаны только для одного из независимых охлаждающих контуров, второй контур имеет аналогичные элементы). На крышке установлены датчик давления в криосистеме (5) и датчик температуры в криосистеме (6), а также патрубок для подачи рабочего хладагента (7) и патрубок подачи инертного газа для поддержания в баке стандартного атмосферного давления (8).

Рабочий хладагент (2) используют для подачи потребителю и в качестве рабочего хладагента может быть использован, например, жидкий азот.

Для контроля запаса хладагента бак установлен на весовую платформу (9).

Каждый независимый охлаждающий контур (4) состоит из мотора (10) приводящего во вращение центробежный крионасос (11), нагнетающий рабочий хладагент в пластинчатый теплообменник (12), из которого хладагент поступает в магистраль подачи хладагента потребителю (13). Расход хладагента контролируется трубкой Вентури для измерения расхода хладагента в магистрали подачи (14), температура и давление в магистрали подачи регистрируются датчиками температуры хладагента в магистрали подачи (15) и датчиком давления хладагента в магистрали подачи (16).

Пластинчатый теплообменник (12) состоит из рифленых пластин, которые образуют между собой плоские полости. В теплообменнике две камеры (не показаны) и по два входных и выходных патрубка. Плоские полости, образованные пластинами, чередуются - одна принадлежит первой камере, вторая - второй, третья снова первой и т.д. Таким образом, между камерами создается большая поверхность для теплового контакта, обеспечивающая передачу тепла/холода от рабочего хладагента, находящегося в одной из камер пластинчатого теплообменника к рабочему хладагенту, находящемуся в другой камере пластинчатого теплообменника. Соответственно через одну камеру пропускают рабочий хладагент (сжиженный азот), который подают потребителю через магистраль подачи хладагента потребителю (13), подсоединенную к соответствующей камере.

После прохождения по контуру охлаждения потребителя (на фиг. 1 не показан) хладагент поступает в возвратную магистраль (17), расход хладагента в которой также контролируется трубкой Вентури для измерения расхода хладагента в возвратной магистрали (18), температура и давление в возвратной магистрали регистрируются датчиками температуры (19) и давления (20). Из магистрали (17) хладагент поступает непосредственно в бак (1).

В другую камеру пластинчатого теплообменника (12) рабочий хладагент поступает из бака (1) через дроссельную заслонку (21), регулируемую автоматическим приводом (22). Выход из этой камеры пластинчатого теплообменника подключен к магистрали вакуумной откачки (23), которая создает в теплообменнике разрежение, приводящее к переохлаждению хладагента. Температура и давление в магистрали вакуумной откачки контролируются датчикам температуры переохлажденного рабочего хладагента (24) и датчиком давления переохлажденного рабочего хладагента (25).

За счет испарения при пониженном давлении азот переохлаждается ниже 77 К (например, до 72 К), и охлаждает рабочий хладагент (жидкий азот) подающийся к потребителю через магистраль подачи хладагента потребителю (13).

Одной из задач пластинчатого теплообменника (12) является разделение рабочего хладагента, который прокачивается крионасосом в одной из камер пластинчатого теплообменника (12), и рабочего хладагента который вакуумируется в другой камере пластинчатого теплообменника (12). Если не сделать такого разделения и центробежным крионасосом перекачивать хладагент (жидкий азот), который активно испаряется с кипением из-за вакуумирования, то работа насоса не будет стабильной из-за кавитационного срыва потока.

Необходимо также отметить роль дроссельной заслонки (21). Ей контролируют поступление рабочего хладагента в вакуумируемую камеру теплообменника, где за счет вакуумного испарения осуществляется переохлаждение рабочего хладагента. Регулируя положение заслонки, контролируют расход рабочего хладагента и температуру переохлаждения. При этом вакуумированию не подвергается бак (1), в котором поддерживается стандартное атмосферное давление, что подавляет кипение рабочего хладагента в баке (1) и обеспечивает стабильную работу крионасоса (11).

Таким образом, заявленная конструкция криосистемы позволяет обеспечить стабильную подачу рабочего хладагента потребителям, а за счет переохлаждения позволяет предотвратить кипение азота в криостате охлаждаемого ВТСП устройства, обеспечив надежное омывание рабочим хладагентом и охлаждение элементов в криостате охлаждаемого объекта (ВТСП-электродвигателя, ВТСП-кабеля, и т.п.).

Необходимо также отметить, что криосистема в соответствии с изобретением предусматривает наличие как одного, так и нескольких независимых охлаждающих контуров (4) (на фиг. 1, для примера, изображено два независимых охлаждающих контура). Наличие нескольких независимых охлаждающих контуров (4) позволяет осуществлять независимое охлаждение нескольких ВТСП устройств (например, один контур - ВТСП-кабель и ВТСП-электродвигатель, другой - ВТСП-генератор и ВТСП-ТОУ и т.п.), что позволит независимо контролировать температуру переохлаждения жидкого азота и скорость потока в каждом канале, повышая эффективность охлаждения и снижая расход рабочего хладагента (жидкого азота).

Заявленная криосистема работает следующим образом. В сухой бак (1) заливается рабочий хладагент (2) через заливной патрубок для подачи рабочего хладагента (7). Включаются приводы мотора (10) крионасоса (11). Включается вакуумная откачка (на фиг. 1 не показана) через магистраль вакуумной откачки (23) и регулируется положение дроссельной заслонки (21). После регистрации по датчикам температуры охлаждаемого устройства достижения необходимой температуры криостатирования, охлаждаемое устройство может начинать работу. По регистрации весовой платформой (9) (устройство регистрации и контроля ее веса на фиг. 1 не показано) достижения критически малого зацаса рабочего хладагента, когда его уровень становится ниже заборного устройства крионасоса (11), или регистрации по трубке Вентури для измерения расхода хладагента в магистрали подачи (14) снижения расхода рабочего хладагента (это устройство регистрации и контроля на фиг. 1 также не показано) - работа охлаждаемого ВТСП устройства останавливается.

Из приведенного выше описания работы заявляемой криосистемы явно следует достижение заявляемого технического результата: устранение выявленных технических проблем наиболее близкого технического решения раскрытого в патенте RU №2616147.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 174.
14.03.2019
№219.016.df4d

Арифметико-логическое устройство и способ преобразования данных с использованием такого устройства

Изобретение относится к области вычислительной техники. Технический результат заключается в увеличении производительности устройства при решении задач дискретной математики. Устройство включает в себя три входа данных, вход кода операций, выход данных, блок циклического сдвига на 8, 16, 24...
Тип: Изобретение
Номер охранного документа: 0002681702
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1ea

Устройство активной защиты акватории ударно-волновым воздействием на подводный объект

Изобретение относится к области защиты акваторий и инфраструктуры промышленных и иных охраняемых объектов, расположенных во внутренних водоемах и на континентальном шельфе, от подводных диверсантов и других подводных объектов. Предложено устройство активной защиты акватории ударно-волновым...
Тип: Изобретение
Номер охранного документа: 0002681967
Дата охранного документа: 14.03.2019
10.04.2019
№219.016.fef2

Одностадийный способ получения ароматического полиэфира

Настоящее изобретение относится к одностадийному способу получения ароматических полиэфиров реакцией нуклеофильного замещения, включающему взаимодействие 0,056-0,063 моль 4,4'-дихлордифенилсульфона, 90 мл диметилсульфоксида, 0,0024 моль катализатора оксида алюминия, 0,087 моль щелочного агента...
Тип: Изобретение
Номер охранного документа: 0002684328
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff03

Способ получения ароматических полиэфиров

Изобретение относится к области получения ароматических полиэфиров. Описан способ получения ароматических полиэфиров реакцией нуклеофильного замещения, включающий взаимодействие 0,0404 моль 4,4'-дихлордифенилсульфона и 0,0404 моль ароматических диоксисоединений в присутствии 0,044 моль...
Тип: Изобретение
Номер охранного документа: 0002684327
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff0f

Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Настоящее изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов. Описан способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении: 0,021-0,035 моль...
Тип: Изобретение
Номер охранного документа: 0002684329
Дата охранного документа: 08.04.2019
20.04.2019
№219.017.351d

Способ послойного изготовления изделий из нескольких порошков и устройство для его осуществления

Изобретение относится к послойному изготовлению изделий из нескольких порошков. Способ включает изготовление в камере построения каждого слоя фазами, каждая из которых включает послойную подачу порошка из бункера с дозирующим устройством на технологически заданные участки рабочей поверхности...
Тип: Изобретение
Номер охранного документа: 0002685326
Дата охранного документа: 17.04.2019
20.04.2019
№219.017.3548

Инжекционный лазер

Использование: для создания инжекционного лазера. Сущность изобретения заключается в том, что инжекционный лазер включает выращенную на подложке лазерную гетероструктуру, содержащую активную область, заключенную между первым и вторым волноводными слоями, к которым с внешней стороны примыкают...
Тип: Изобретение
Номер охранного документа: 0002685434
Дата охранного документа: 18.04.2019
20.04.2019
№219.017.35ac

Устройство для послойного изготовления объемных изделий из двух и более порошковых компонентов

Изобретение относится к устройству для послойного изготовления объемных изделий и может быть использовано при изготовлении объемных изделий из двух или более разнородных порошковых компонентов. Устройство содержит камеру построения, платформу построения, порошковые питатели, лазерное устройство...
Тип: Изобретение
Номер охранного документа: 0002685328
Дата охранного документа: 17.04.2019
27.04.2019
№219.017.3c9f

Реконфигурируемый вычислительный модуль

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении удельных производительностей на единицу мощности потребления и на единицу площади. Реконфигурируемый вычислительный модуль, подключаемый к внутрикристальной кольцевой сети, содержит макроблок...
Тип: Изобретение
Номер охранного документа: 0002686017
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3cec

Композиционный материал на основе полифениленсульфона

Изобретение относится к применению композиционного материала в качестве суперконструкционного полимерного материала для аддитивных 3D-технологий методом послойного наплавления (FDM). Композиционный материал содержит следующие компоненты, мас.%: 85-95 полифениленсульфона (ПФС) и 5-15 талька....
Тип: Изобретение
Номер охранного документа: 0002686329
Дата охранного документа: 25.04.2019
Показаны записи 11-16 из 16.
04.07.2019
№219.017.a547

Способ получения двухстороннего сверхпроводника второго поколения

Изобретение относится к области химической технологии получения покрытий так называемых сверхпроводящих проводников второго поколения. Способ получения двухстороннего сверхпроводника второго поколения методом химического осаждения металлоорганических соединений из паровой фазы в трубчатом...
Тип: Изобретение
Номер охранного документа: 0002386732
Дата охранного документа: 20.04.2010
02.08.2019
№219.017.bb6d

Способ изготовления высокотемпературной сверхпроводящей ленты и лента

Изобретение относится к способу изготовления высокотемпературной сверхпроводящей ленты. Осуществляют осаждение буферных слоев на подложку в следующей последовательности: слой оксида алюминия, слой оксида иттрия, слой оксида магния, слой гомоэпитаксиального оксида магния и слой манганита...
Тип: Изобретение
Номер охранного документа: 0002696182
Дата охранного документа: 31.07.2019
27.12.2019
№219.017.f394

Многополостной катод для плазменного двигателя

Изобретение относится к плазменной технике, а именно к полым многополостным катодам, которые могут быть использованы в плазменных ракетных двигателях, а также в технологических источниках плазмы, предназначенных для ионно- плазменной обработки материалов в вакууме либо в качестве автономно...
Тип: Изобретение
Номер охранного документа: 0002710455
Дата охранного документа: 26.12.2019
23.05.2023
№223.018.6c0d

Способ криостатирования сверхпроводниковых обмоток бесколлекторного двигателя постоянного тока

Изобретение относится к электротехнике. Технический результат заключается в упрощении конструкции и уменьшении массогабаритных характеристик. Способ криостатирования сверхпроводниковых обмоток статора бесколлекторного двигателя постоянного тока, характеризующийся тем, что включает следующие...
Тип: Изобретение
Номер охранного документа: 0002735953
Дата охранного документа: 11.11.2020
27.05.2023
№223.018.70c8

Вводы тока в статорные обмотки втсп-электродвигателя

Изобретение относится к бесколлекторным двигателям постоянного тока со сверхпроводящими обмотками, в частности к устройствам для ввода тока в статорные обмотки из высокотемпературных сверхпроводников (ВТСП) этих двигателей, и может найти применение при производстве таких двигателей. Технический...
Тип: Изобретение
Номер охранного документа: 0002739710
Дата охранного документа: 28.12.2020
17.06.2023
№223.018.7faf

Авиационная интегрированная электроэнергетическая установка

Авиационная интегрированная электроэнергетическая установка содержит батарейный блок, выполненные с использованием сверхпроводниковых материалов с возможностью криоохлаждения распределительное устройство, соединительные кабели, по меньшей мере один двигатель, криосистему с по меньшей мере одним...
Тип: Изобретение
Номер охранного документа: 0002768988
Дата охранного документа: 28.03.2022
+ добавить свой РИД