×
17.06.2023
223.018.7e01

Результат интеллектуальной деятельности: Микромодуль космического назначения

Вид РИД

Изобретение

Аннотация: Изобретение относится к микроэлектронным приборам космического назначения и может быть использовано в составе бортовой и наземной аппаратуры космических аппаратов с высокоплотным монтажом. Предложен микромодуль, включающий в свой состав корпус с крышкой, основание, N чередующихся коммутационных плат, содержащих сквозные металлизированные отверстия, коммутационные металлические слои в виде микрополосковых линий и диэлектрические слои, с установленными на них, электрически соединенными с каждой из них, бескорпусными кристаллами, с заливкой компаундом пространств между платами. В предложенном микромодуле со стороны, не занятой коммутационными слоями, последовательно расположены глухие отверстия для монтажа бескорпусных кристаллов и сквозные отверстия для коммутации платы с бескорпусными кристаллами после формирования коммутационных слоев, при этом глубина глухих отверстий выбирается из соотношения Н≤h+a, где Η - толщина бескорпусных кристаллов, мкм, h - глубина глухого отверстия, мкм, а - толщина адгезива после монтажа бескорпусного кристалла и отверждения, мкм. Технический результат заключается в создании технологичного микромодуля космического назначения с уменьшенными массогабаритными характеристиками, предназначенного для эксплуатации в составе бортовой аппаратуры в широком диапазоне температур с увеличенным сроком эксплуатации. 7 з.п. ф-лы, 4 ил.

Изобретение относится к микроэлектронным приборам космического назначения, состоящих из нескольких полупроводниковых компонентов на твердом теле (активных кристаллов) или конструктивных элементов (пассивных чип-компонентов), сформированных внутри одной несущей подложки и сгруппированных в единую сборку и может быть использовано в составе бортовой и наземной аппаратуры космических аппаратов с высокоплотным монтажом.

Из уровня техники известно техническое решение (RU 2 659 726. Опубл. 03.07.2018. Бюл. №19 [1]), относящееся к микромодулям, содержащим бескорпусные активные кристаллы. Согласно известному техническому решению микромодуль включает в свой состав гибкую плату, снабженную металлизированными межслойными переходными отверстиями, и смонтированные на ней кристаллы бескорпусных больших интегральных схем с выступами. Припойные выступы на обратной стороне платы служат выводами микромодуля, которые затем могут быть распаяны на следующий уровень.

К недостаткам известного технического решения относятся значительные массогабаритные характеристики, низкая технологичность при изготовлении и низкая эффективность при эксплуатации бортовой аппаратуры в космическом пространстве, содержащей микромодули, из-за разнородности используемых конструкционных материалов.

Наиболее близким по технической сущности и достигаемому эффекту является техническое решение известное из (Design and Assembly Process Implementation for BGAs. IPC-7095 B. 2008. Рис. 4.12 - 4.17 [2]). Согласно известному техническому решению кристаллы устанавливаются друг над другом с применением прокладок, благодаря чему увеличивается плотность монтажа.

К недостаткам известного технического решения относятся значительные массогабаритные характеристики, низкая технологичность при изготовлении и низкая эффективность при эксплуатации в космическом пространстве бортовой аппаратуры, содержащей микромодули, из-за разнородности используемых конструкционных материалов.

Заявляемое в качестве изобретения техническое решение - «Микромодуль космического назначения» направлено на уменьшение массогабаритных характеристик, повышение технологичности конструкции, как следствие, эффективности и срока активного существования (САС) бортовой аппаратуры, содержащей микромодули, при ее эксплуатации в космическом пространстве в широком диапазоне температур [5].

Указанный результат достигается тем, что микромодуль, включающий в свой состав корпус с крышкой, основание, N чередующихся коммутационных плат, содержащих сквозные металлизированные отверстия, коммутационные металлические слои виде микрополосковых линий и диэлектрические слои, с установленными на них, электрически соединенными с каждой из них, бескорпусными кристаллами, с заливкой компаундом пространств между платами. При этом со стороны, не занятой коммутационными слоями, последовательно расположены глухие отверстия для монтажа бескорпусных кристаллов и сквозные отверстия для коммутации платы с бескорпусными кристаллами после формирования коммутационных слоев, при этом глубина глухих отверстий выбирается из соотношения

Н≤h+a,

где H - толщина бескорпусных кристаллов, мкм,

h - глубина глухого отверстия, мкм,

а - толщина адгезива после монтажа бескорпусного кристалла и отверждения, мкм.

Также, зазор, образованный стенками сквозного отверстия и контактными площадками b, выбирается из соотношения

b≥d/2, где

d - зазор, образованный стенками бескорпусного кристалла и глухого отверстия.

Высота петли сварной микропроволоки l выбирается из соотношения

l<0,7⋅D, где

D - диаметр шарика соединения, мкм.

Расстояние от контактных площадок коммутационного слоя до контактных площадок бескорпусного кристалла выбирается путем исключения температурных искажений геометрии электрических соединений в диапазоне температур от минус 120°С до +120°С.

В качестве материала диэлектрического слоя может быть выбран диэлектрик, толщина и тип которого определяется необходимостью обеспечения волнового сопротивления микрополосковых линий в пределах 50 Ом с допуском ±5%.

В качестве материала диэлектрического слоя также может быть выбран полипиромеллитимид толщиной 14±2 мкм. Для монтажа активного бескорпусного кристалла по периметру глухого отверстия используют случайно распределенные по площади спейсеры, диаметр которых r выбирают из соотношения

r<s, мкм, где

s - толщина адгезива до монтажа бескорпусного кристалла и отверждения, мкм.

Также, в качестве подложки коммутационной платы используют преимущественно высокоомный кремний. В качестве бескорпусных кристаллов используют преимущественно кристаллы на основе монокристаллического кремния. В качестве компаунда выбран полимерный отверждаемый материал с коэффициентом температурного линейного расширения в диапазоне температур от минус 120°С до +120°С, равным коэффициентом температурного линейного расширения монокристаллического кремния.

Сущность заявляемого устройства поясняется графическими материалами (фиг.1-4):

фиг. 1 - схематично представлен разрез платы микромодуля космического назначения с установленным(и) бескорпусным(и) кристаллом(ами);

фиг. 2 - схематично представлено поперечное сечение микромодуля космического назначения;

фиг. 3 - микрофотография внешнего вида изготовленного образца микромодуля с использованием компаунда, для проведения циклических испытаний;

фиг. 4 - температурно-временная диаграмма одного цикла испытаний.

На фиг. 1 и фиг. 2 обозначены:

поз.1 - коммутационная плата;

поз.2 - бескорпусной кристалл;

поз.3 - глухое отверстие для монтажа бескорпусного кристалла;

поз.4 - сквозное отверстие для монтажа бескорпусного кристалла;

поз.5 - контактные площадки бескорпусного кристалла;

поз.6 - петля сварной микропроволоки;

поз.7 - контактные площадки коммутационного слоя;

поз.8 - спейсер в адгезиве для монтажа бескорпусного кристалла;

поз.9 - диэлектрический слой - полипиромеллитимид;

поз.10 - шарик соединения Flip Chip;

поз.11 - коммутационный слой;

поз.12 - компаунд;

поз.13 - сквозные металлизированные отверстия;

Н - толщина бескорпусных кристаллов, мкм;

h - глубина глухого отверстия, мкм;

а - толщина адгезива после монтажа бескорпусного кристалла и отверждения, мкм;

b - зазор, образованный стенками сквозного отверстия и контактными площадками бескорпусного кристалла;

d - зазор, образованный стенками бескорпусного кристалла и глухого отверстия;

l - высота петли сварной микропроволоки, мкм;

D - диаметр шарика соединения, мкм.

Осуществление изобретения можно пояснить следующим образом.

Как и было указано выше отличительными признаками предложенного микромодуля космического назначения являются:

- со стороны, не занятой коммутационными слоями, последовательно расположены глухие отверстия для монтажа кристаллов и сквозные отверстия для коммутации платы с бескорпусными кристаллами после формирования коммутационных слоев, при этом глубина глухих отверстий выбирается из соотношения

Н≤h+a,

где Η - толщина бескорпусных кристаллов, мкм, h - глубина глухого отверстия, мкм, а - толщина адгезива после отверждения, мкм;

- зазор, образованный стенками сквозного отверстия и контактными площадками b, выбирается из соотношения

b≥d/2,

где d - зазор, образованный стенками бескорпусного кристалла и глухого отверстия;

- высота петли сварной микропроволоки l выбирается из соотношения

l<0,7⋅D,

где D - диаметр шарика соединения, мкм;

- расстояние от контактных площадок коммутационного слоя до контактных площадок бескорпусного кристалла выбирается путем исключения температурных искажений геометрии электрических соединений в диапазоне температур от минус 120°С до +120°С;

- в качестве материала диэлектрического слоя выбран диэлектрик, толщина и тип которого определяется необходимостью обеспечения волнового сопротивления микрополосковых линий не более 50 Ом с допуском ±5%;

- в качестве материала диэлектрического слоя выбран полипиромеллитимид толщиной 14±2 мкм;

- для монтажа бескорпусного кристалла по периметру глухого отверстия используют случайно распределенные по площади спейсеры, диаметр которых г выбирают из соотношения

r<s, мкм,

где s - толщина адгезива до монтажа бескорпусного кристалла и отверждения, мкм;

- в качестве подложки коммутационной платы используют преимущественно высокоомный кремний;

- в качестве бескорпусных кристаллов используют преимущественно кристаллы на основе монокристаллического кремния;

- в качестве компаунда выбран полимерный отверждаемый материал с коэффициентом температурного линейного расширения в диапазоне температур от минус 120°С до +120°С равным коэффициентом температурного линейного расширения монокристаллического кремния.

Размещение бескорпусных кристаллов на плате со стороны не занятой коммутационными слоями, в последовательно расположенных глухих отверстиях для монтажа бескорпусных кристаллов и сквозных отверстиях для коммутации платы с бескорпусными кристаллами после формирования коммутационных слоев, позволяет уменьшить массогабаритные характеристики микромодуля и увеличивает ударопрочность за счет геометрии расположения инерционной массы. Для достижения данного технического результата выбраны также геометрические параметры микромодуля: глубина глухих отверстий; зазор, образованный стенками сквозного отверстия и контактными площадками; высота петли сварной микропроволоки.

Глубина глухих отверстий выбирается из соотношения

Н≤h+a,

где Η - толщина бескорпусных кристаллов, мкм,

h - глубина глухого отверстия, мкм,

а - толщина адгезива после монтажа бескорпусного кристалла и отверждения, мкм.

Зазор, образованный стенками сквозного отверстия и контактными площадками b бескорпусного кристалла, выбран из соотношения

b≥d/2,

где d - зазор, образованный стенками бескорпусного кристалла и глухого отверстия обусловлен требованиями электрической изоляции элементов конструкции и технологичности микромодуля.

Высота петли сварной микропроволоки l выбрана из соотношения l<0,7⋅D,

где D - диаметр шарика соединения, мкм, обусловлен требованиями электрической изоляции элементов конструкции и технологичности микромодуля.

Также, выбор геометрических параметров микромодуля и используемых для изготовления микромодуля материалов обусловлен следующим:

- выбор расстояния от контактных площадок коммутационного слоя до контактных площадок бескорпусного кристалла обусловлен требованиями исключения температурных искажений геометрии электрических соединений микромодуля в диапазоне температур эксплуатации на орбите от минус 120°С до +120°С;

- в качестве материала диэлектрического слоя выбран диэлектрик, толщина и тип которого определяется необходимостью обеспечения волнового сопротивления микрополосковых линий не более 50 Ом с допуском ±5%;

- выбор в качестве материала диэлектрического слоя полипиромеллитимида толщиной 14±2 мкм обусловлен его диэлектрическими характеристиками и исключительной термостойкостью [3], что гарантирует функционирование микромодуля в диапазоне температур эксплуатации на орбите от минус 120°С до +120°С;

- использование для монтажа бескорпусного кристалла по периметру глухого отверстия случайно распределенных по площади спейсеров, диаметр которых r выбирают из соотношения r<s, мкм, где s - толщина адгезива до монтажа бескорпусного кристалла и отверждения, мкм, обеспечивает монтаж кристалла со строго заданным, управляемым калиброванным зазором;

- использование в качестве подложки коммутационной платы преимущественно высокоомного кремния с удельным объемным сопротивлением 15 000 - 50 000 Ом⋅см и в качестве бескорпусных кристаллов преимущественно кристаллов на основе монокристаллического кремния обеспечивает функционирование микромодуля в диапазоне температур эксплуатации на орбите от минус 120°С до +120°С за счет стабильности диэлектрических характеристик и исключения термомеханических напряжений в конструкции;

- для исключения термомеханических напряжений в конструкции и надежного функционирования микромодуля в диапазоне температур эксплуатации на орбите в качестве компаунда выбран полимерный отверждаемый материал с коэффициентом температурного линейного расширения в диапазоне температур от минус 120°С до +120°С равным коэффициенту температурного линейного расширения монокристаллического кремния.

Практическое осуществление предложенного изобретения поясняется на приведенном ниже неисключительном примере испытаний тестовых образцов микромодуля, изготовленных согласно предложенному изобретению.

Для проверки компаунда способности выдерживать разрушающее воздействие циклических изменений температуры ускоренным методом, изложенном в [4] изготовлены тестовые образцы микромодуля на основе кремния в количестве 4 шт., в которых компаундом было заполнено свободное пространство между платами. Внешний вид изготовленного образца с использованием компаунда, для проведения циклических испытаний представлен на фиг.3. Используемое оборудование: стенд для испытания микромодулей в инертной среде, включающий в себя регулятор температуры ТРМ-1; секундомер «Интеграл С1»; термопара; реле времени УТ24; пинцет лабораторный металлический - инструмент для дистанционного удержания небольших предметов, сосуд Дьюара СДС-20 - оборудование для хранения жидкого азота. Количество циклов термоциклирования 50 циклов, температурно-временная диаграмма одного цикла представлена на фиг.4. Образцы выдержали циклические испытания при изменении температуры от минус 180°С до плюс 125°С в течение 50 циклов. Видимых нарушений не обнаружено.

Таким образом, предложен технологичный в изготовлении микромодуль космического назначения с уменьшенными массогабаритными характеристиками, предназначенный для эксплуатации в составе бортовой аппаратуры в широком диапазоне температур с увеличенным сроком активного существования.

Источники информации

[1]. Блинов Г.А., Долговых Ю.Г., Погалов А.И. Микромодуль. RU 2 659 726, Патентообладатель: Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности «Роскосмос». Заявка: 2017135615, 05.10.2017, Опубл. 03.07.2018, Бюл. №19.

[2]. Design and Assembly Process Implementation for BGAs. IPC-7095 B. 2008. Дата обращения: 07.08.2020. https://necompany.ru/downloads/IPC_rus/IPC-7095B.pdf.

[3]. Жуков A.A. Физико-химические и технологические основы получения полиимидных структур для микроэлектронных устройств, устройств микромеханики и микросенсорики. Дисс. соиск уч. ст. д.т.н. Коды специальности ВАК: 05.27.01, 05.27.06. - М., 2003 г. 315 с. Научная библиотека диссертаций и авторефератов Дата обращения: 10.08.2020. http://www.dissercat.com/content/fiziko-khimicheskie-i-tekhnologicheskie-osnovy-polucheniya-poliimidnykh-struktur-dlya-mikroe#ixzz5SJp6luYp.

[4]. Дидык П.И., Семенов В.Л., Басовский Α.Α., Жуков А.А. Лабораторная установка термоциклирования в широком диапазоне температур. Приборы и техника эксперимента. 2015, №2. С.132.

[5]. Цаплин С.А., Болычев С.А., Романов А.Е. Теплообмен в космосе. Самара. Изд-во Самарского ун-та, 2018 г., 92 с.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 99.
20.01.2018
№218.016.102c

Способ определения повышенной сейсмической активности

Изобретение относится к области сейсмологии и может быть использовано для определения повышенной сейсмической активности. Сущность: регистрируют тепловые аномалии земной поверхности и атмосферы пассивным СВЧ-радиометром, установленным на борту космического аппарата. Проводят наземную...
Тип: Изобретение
Номер охранного документа: 0002633646
Дата охранного документа: 16.10.2017
04.04.2018
№218.016.2ea0

Способ определения целостности высокоточных навигационных определений в реальном времени

Изобретение относится к области спутниковой навигации и может быть использовано в качестве оценки достоверности высокоточного навигационного определения в реальном времени. Для определения целостности высокоточного навигационного определения пользователя вычисляются уровни защиты по горизонтали...
Тип: Изобретение
Номер охранного документа: 0002644450
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3219

Способ мониторинга окружающей среды и беспилотный аппарат для использования в данном способе

Изобретение относится к способам экологического мониторинга, использующим мультиагентные (роевые) системы наблюдения. Сущность: измеряют контролируемые параметры окружающей среды в узлах децентрализованной одноранговой сети, каждый из которых организован на беспилотном подвижном аппарате....
Тип: Изобретение
Номер охранного документа: 0002645249
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.3615

Способ формирования сигнала спутниковой навигационной системы

Изобретение относится к области радионавигации. Технический результат заключается в расширении арсенала средств для формирования сигналов спутниковой навигационной системы. Указанный сигнал спутниковой навигационной системы формируют в квадратурном модуляторе из синфазной и квадратурной...
Тип: Изобретение
Номер охранного документа: 0002646315
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.3a6f

Система спутниковой связи с защитой канала удаленного управления работой

Изобретение относится к области защиты сети спутниковой связи. Технический результат заключается в усилении защиты системы спутниковой связи. Технический результат достигается за счет системы спутниковой связи с защитой канала удаленного управления работой, содержащей центральную земную станцию...
Тип: Изобретение
Номер охранного документа: 0002647631
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.4cfa

Способ и устройство фазирования и равносигнально-разностного автосопровождения неэквидистантной цифровой антенной решётки приёма широкополосных сигналов

Изобретение относится к радиотехнике и может использоваться для приёма широкополосных сигналов. Устройство содержит приёмник, процессор формирования диаграммы направленности, запоминающее устройство, шину данных, управляющую ЭВМ, дешифратор адреса, генератор тактовых импульсов, гетеродин и...
Тип: Изобретение
Номер охранного документа: 0002652529
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d9f

Установка для проведения испытаний стойкости к термоударам приборов космического назначения

Изобретение относится к технике для проведения испытаний, а именно для исследования устойчивости к воздействию резких температурных колебаний, и может быть использовано при испытаниях на термоудар приборов космического назначения. Установка для проведения испытаний стойкости к термоударам...
Тип: Изобретение
Номер охранного документа: 0002652525
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.51ed

Способ получения и обработки изображений дистанционного зондирования земли, искажённых турбулентной атмосферой

Способ получения и обработки изображений дистанционного зондирования Земли, искаженных турбулентной атмосферой, заключается в том, что получают спектрально-фильтруемое коротко-экспозиционное изображение объекта, пространственно инвариантного к атмосферным искажениям. Получают средний квадрат...
Тип: Изобретение
Номер охранного документа: 0002653100
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5328

Способ обмена данными с космическими аппаратами и наземный комплекс управления для осуществления данного способа

Группа изобретений относится к способу обмена данными с космическими аппаратами (КА) и наземному комплексу управления. Наземный комплекс управления содержит два комплекса средств управления полетом КА, соответствующие первому и второму центру управления полетом (ЦУП1 и ЦУП2), наземную станцию...
Тип: Изобретение
Номер охранного документа: 0002653935
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.5554

Многозональное сканирующее устройство с матричным фотоприёмным устройством

Сканирующее устройство для дистанционного получения изображений, формирующее N информационных каналов (от 1 до N), включает оптически связанные между собой плоское зеркало, совершающее возвратно-поступательное угловое перемещение и N оптико-электронных блоков, содержащих линзовый объектив,...
Тип: Изобретение
Номер охранного документа: 0002654300
Дата охранного документа: 17.05.2018
Показаны записи 21-30 из 41.
19.01.2018
№218.016.01e6

Способ изготовления сквозных металлизированных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники и полупроводниковых приборов, содержащих в своей структуре металлизированные и/или неметаллизированные сквозные отверстия в кремнии различного...
Тип: Изобретение
Номер охранного документа: 0002629926
Дата охранного документа: 04.09.2017
10.05.2018
№218.016.46c3

Тест-реле с механической активацией аксессуаром измерительного прибора

Изобретение может использоваться в электронной, космической, авиационной, военной промышленности при создании электронной аппаратуры, предполагающей проведение диагностики, настройки, поиск неисправностей, входной и выходной контроль. Основное назначение изобретения - обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002650502
Дата охранного документа: 16.04.2018
09.06.2018
№218.016.5c91

Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002656126
Дата охранного документа: 31.05.2018
20.06.2018
№218.016.63e1

Способ обработки полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной свч- плазмы при атмосферном давлении

Изобретение относится к технологии микроэлектроники, а именно изготовлению изделий микроэлектроники, содержащих в конструкции клеевое адгезионное соединение «полиимидная пленка-металл». В частности, предложена обработка полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002657899
Дата охранного документа: 18.06.2018
23.09.2018
№218.016.8a1e

Ступня ноги шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002667594
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a2a

Ступня ноги шагающего космического микромеханизма

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, и выполнения задач напланетных миссий. Ступня выполнена в виде пластины с нанесенным на площадь ее...
Тип: Изобретение
Номер охранного документа: 0002667593
Дата охранного документа: 21.09.2018
03.11.2018
№218.016.99ff

Способ создания двустороннего топологического рисунка в металлизации на подложках со сквозными металлизированными микроотверстиями

Способ создания двустороннего топологического рисунка металлизации позволит повысить технологичность и воспроизводимость при формировании двустороннего топологического рисунка в металлизации на подложках со сквозными металлизированными микроотверстиями. При формировании топологического рисунка...
Тип: Изобретение
Номер охранного документа: 0002671543
Дата охранного документа: 01.11.2018
19.12.2018
№218.016.a86b

Ступня ноги для шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена с...
Тип: Изобретение
Номер охранного документа: 0002675327
Дата охранного документа: 18.12.2018
29.03.2019
№219.016.f746

Тепловой микромеханический актюатор и способ его изготовления

Изобретение относится к области микросистемной техники и может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы, обеспечивающие преобразование «электрический сигнал - перемещение» и/или «изменение...
Тип: Изобретение
Номер охранного документа: 0002448896
Дата охранного документа: 27.04.2012
29.04.2019
№219.017.447e

Микросистемное устройство управления поверхностью для крепления малогабаритной антенны

Изобретение относится к области микросистемной техники и может быть использовано при создании микросистемных устройств управления и/или сканирования малогабаритной антенной или оптической отражающей поверхностью (зеркала) на основе подвижных термомеханических микроактюаторов, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002456720
Дата охранного документа: 20.07.2012
+ добавить свой РИД