×
16.06.2023
223.018.7c1a

Результат интеллектуальной деятельности: Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему стадию нанесения комплексных солей на субстрат, сушку полупродукта и его последующий обжиг, при этом стадия нанесения комплексных солей представляет из себя нанесение двойных комплексных солей с формулой [ML][ML]X, где M и M = Rh или Pd, L = этилендиамин или аммиак, L = CO, X = противоионы, x, y и z – стехиометрические коэффициенты. Второе изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, в котором стадия нанесения комплексных солей содержит следующие технологические операции: нанесение соединения типа [ML] X, где M = Rh или Pd, L = этилендиамин или аммиак, X = противоионы, x и y – стехиометрические коэффициенты, сушку в воздушной среде при комнатной температуре в течение 8-20 ч, затем в сушильном шкафу в воздушной среде при температуре 70-95 °С в течение 3-9 ч, нанесение соединения типа X[M L], где M = Rh или Pd, L = CO, X = противоионы, x и y – стехиометрические коэффициенты. Технический результат заключается в получении биметаллических палладий-родиевых катализаторов с высокой каталитической активностью при снижении затрат энергии и количества технологических растворов для утилизации. 2 н. и 4 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к способам получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Более конкретно, изобретение относится к способам приготовления биметаллических катализаторов, содержащих наночастицы палладия и родия для очистки выхлопных газов автомобилей с бензиновыми двигателями.

Биметаллические палладий-родиевые катализаторы применяются как составная часть трехмаршрутных каталитических нейтрализаторов окисления оксида углерода, органических соединений и восстановления оксидов азота.

Наиболее широко используемые в настоящее время каталитические нейтрализаторы, на которых эффективно протекают процессы окисления оксида углерода, органических соединений и восстановления оксидов азота даже при относительно низких температурах и высоких скоростях потока, содержат Pt и/или Pd и Rh, нанесенные на носители: Al2O3, CeO2, ZrO2 и др. [Heck R. M. Catalytic air pollution control: commercial technology / R. M. Heck, R. J. Farrauto, S. T. Gulati. – Hoboken : John Wiley & Sons, 2009. – 518 с.]. Для повышения термической стабильности носителя, а также для увеличения емкости хранения кислорода (oxygen storage capacity - OSC) оксид алюминия часто легируется диоксидом циркония и/или оксидами редкоземельных элементов, например, Ce, La, Y.

Известен метод приготовления катализаторов [Exhaust treatment device: пат 1541220В1 Европейского Союза : МПК B 01 D 53/945 / Nunan J. G., патентообладатель Umicore AG and Co KG. - № 20040078285 ; заявл. 03.12.2003, опубл. 26.02.2014, Бюл. №2014/09], в котором оба активных металла (Pd/Pt и Rh), а также OSC компонент содержатся в одном слое каталитического блока. Катализаторы готовят с использованием технологии пропитки пористых носителей совместным раствором, содержащим соли платиновых металлов. Недостатком таких методов приготовления является создание каталитически активных компонентов катализатора, в которых образующиеся каталитически активные частицы родия и палладия никак не взаимодействуют между собой и находятся на поверхности оксидных носителей в виде отдельных монометаллических или оксидных фаз.

В результате такого подхода практически полностью исключается возможность образования биметаллических частиц в процессе синтеза катализатора, что приводит к снижению каталитической активности при работе катализатора в условиях высоких температур, вследствие укрупнения частиц Pd и диффузии Rh вглубь носителя.

Известно, что нанесение полиметаллических систем при приготовлении катализаторов имеет ряд преимуществ по сравнению с монометаллическими системами за счет возможного синергетического эффекта. Увеличение термической стабильности Pd-Rh катализаторов может быть достигнуто, если палладий и родий будут распределены на поверхности носителя в виде ультрадисперсных биметаллических частиц [Araya P. Synergism in the reaction of CO with O2 on bimetallic Rh-Pd catalysts supported on silica / P. Araya, V. Diaz // Journal of the Chemical Society, Faraday Transactions (1997) 93 (21):3887-3891. doi:10.1039/a703704j; Renzas J.R. Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. / J.R. Renzas, W. Huang, Y. Zhang, M.E. Grass, D.T. Hoang, S. Alayoglu, D.R. Butcher, F. Tao, Z. Liu, G.A. Somorjai // Phys Chem Chem Phys (2011) 13 (7):2556-2562. doi:10.1039/c0cp01858a]. При этом уменьшение размера частиц приведет к увеличению каталитической активности, а образование твердого раствора существенно понизит вероятность укрупнения частиц Pd и диффузию Rh вглубь носителя.

Обычно полиметаллические катализаторы готовят как описано в способе [Способ приготовления нанесенных полиметаллических катализаторов (варианты): пат. 2294240 Рос. Федерация: МПК / Собянин В.А., Снытников П.В., Козлов Д.В., Воронцов А. В., Коренев С. В., Губанов А. И., Юсенко К. В., Шубин Ю. В., Венедиктов А. Б., патентообладатель Институт Катализа Имени Г.К. Борескова СО РАН, Институт неорганической химии имени А.В. Николаева СО РАН. - № 2005105230A: заявл. 24.02.2005, опубл. 27.02.2007, Бюл. №6]. Способ включает стадию нанесения комплексных солей на субстрат, сушку полупродукта и его последующий обжиг для получения готового продукта. Стадия нанесения комплексных солей подразумевает следующие технологические операции: нанесение прекурсора, несущего катионную часть, из соединений, содержащих в своем составе несколько лигандов, выбранных из: аммиака, галогенид-ионов, гидрокисл-иона, молекул воды или оксидов азота; сушку полупродукта; нанесение прекурсора, несущего анионную часть, из соединений, содержащих в своем составе несколько лигандов, выбранных из: галогенид-ионов; гидрокисл- или цианид-иона; молекул воды, оксидов азота и катионов, например, аммония; очередную сушку полупродукта; восстановление нанесенных компонентов в жидкой среде с использованием гидрозина, формальдегида, гипофосфита натрия или борогидрида натрия.

Одним из недостатков этого метода является использование такого типа комплексных солей, что осуществление восстановления катионов драгоценных металлов до нульвалентного состояния возможно только на отдельной технологической стадии, осуществляемой после стадии сушки.

Техническая проблема заключается в том, что сложная организация технологического процесса подразумевает большой расход энергии и значительное количество технологических растворов для утилизации, в том числе содержащих опасные химические соединения – сильные восстановители.

Авторы изобретения установили, что можно значительно упростить технологию получения полиметаллических катализаторов, изменив состав комплексных солей Pd и Rh.

Технический результат предлагаемого изобретения – получение биметаллических палладий-родиевых катализаторов с высокой каталитической активностью при снижении затрат энергии и количества технологических растворов для утилизации.

Технический результат достигается тем, что исходный носитель обрабатывают раствором специально приготовленного многокомпонентного прекурсора: двойных комплексных солей (ДКС) с общей формулой [M1L1]x[M2L2]yXz, где M1, M2 = Rh или Pd; L1 и L2 = углерод или азотсодержащие лиганды, например, C2O42–, этилендиамин, аммиак; X=противоионы (например, NO2, NO3, CO32– и др.); x, y и z – стехиометрические коэффициенты. Термическое разложение соединений, содержащих в своем составе лиганды, обладающие высокими восстановительными свойствами, позволяет получать наноразмерные биметаллические сплавы RhxPd1-x непосредственно на этапе термической обработки, что делает возможным исключение стадии восстановления в жидкой среде.

Суть способа приготовления биметаллического палладий-родиевого катализатора состоит в последовательности стадий нанесения многокомпонентного прекурсора на носитель и последующей термической обработки.

Сущность изобретения поясняется фигурами, где изображено:

- на Фиг. 1 – таблица с данными по каталитической активности и термическая стабильность образцов по Примерам 1-9.

На первой стадии исходный носитель (Al2O3, CeO2, CexZr1-xO2 и др.) обрабатывают раствором двойной комплексной соли (далее ДКС) таким образом, что на носителе осаждается координационное соединение, состоящие из комплексного катиона и комплексного аниона. В качестве катионов, например, могут быть использованы катионы [Rh(NH3)6]3+, [RhEn3]3+ и [PdEn2]2+, где En – этилендиамин, а в качестве анионов, например, могут быть использованы [PdOx2]2– и [RhOx3]3–, где Ox –
оксалат-анион C2O42–.

На второй стадии проводят термообработку нанесенной на поверхность носителя двойной комплексной соли. Термообработка заключается в сушке в воздушной среде при комнатной температуре в течение 8-20 ч., сушке в воздушной среде при температуре 100-115 °С в течение 3-9 ч., обжиге при температуре не менее 500 °С в течение 0.65-1.5 ч. в восстановительной, инертной или окислительной среде для перевода металлов-комплексообразователей в форму биметаллического сплава.

В случае низкой растворимости ДКС используют вариант нанесения, который состоит в последовательной пропитке носителя сначала раствором комплексной соли, содержащим только катионную часть ДКС (например [Rh(NH3)6](NO3)3), с последующим высушиванием в воздушной среде при комнатной температуре в течение 8-20 ч, затем в воздушной среде при температуре 70-95 °С в течение 3-9 ч. Затем высушенный образец пропитывают раствором комплексной соли, содержащим только анионную часть (например, (NH4)2[PdOx2]), с последующим высушиванием в воздушной среде при комнатной температуре в течение 8-20 ч, затем в воздушной среде при температуре 100-115 °С в течение 3-9 ч. В результате на поверхности носителя формируется необходимая ДКС, подвергающаяся восстановлению на стадии обжига при температуре не менее 500 °С в течение 0.65-1.5 ч. в восстановительной, инертной или окислительной среде.

Вид и характер противоионов не влияют на достижение технического результата. В качестве противоионов может быть использован любой анион, но наиболее предпочтительно использовать те противоионы, что не являются каталитическими ядами для будущих катализаторов, например, NH4+ и NO3 группы.

В предлагаемом подходе использование углеродсодержащих лигандов, которые являются хорошими восстановителями, позволяет восстанавливать благородные металлы-комплексообразователи до нульвалентного состояния даже в инертной и окислительной атмосферах. Побочные продукты легко удаляются в процессе синтеза в виде газообразных продуктов, не образуя соединений, загрязняющих поверхность катализатора и блокирующих активные частицы.

Предлагаемый способ приготовления биметаллического палладий-родиевого катализатора через образование ДКС на поверхности носителя позволяет максимально упростить процесс его приготовления и достичь селективного образования высокодисперсных биметаллических частиц RhxPd1-x на поверхности носителя.

Сущность изобретения может быть проиллюстрирована следующими примерами.

Пример 1.

Приготовление катализатора на основе оксида алюминия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл 2.5·10-3 М раствора [RhEn3]2[PdOx2]3. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 8 ч, затем в воздушной среде при температуре 100 °С в течение 3 ч. Термообработку образца проводят в воздушной среде при 500 °C в течение 40 минут.

Далее измеряют каталитическую активность и термическую стабильность образцов в проточном реакторе в условиях форсированного термического старения. Реакционный поток, состоящий из 0.15 об. % CO, 14.0 об. % O2, 0.01 об.% NO, 0.01 об.% углеводородов (метан, пропилен, толуол) и азота (остальное), подают в реактор со скоростью 334 мл/мин. Каждый образец подвергают 7 циклам нагрева-охлаждения, варьируя конечную температуру цикла (320 °С для первых двух циклов, 600 °С для последующих двух циклов и 800 °С для последних трех циклов). Скорость подъема температуры во всех случаях составляет 10 °С/мин. Концентрацию СО измеряют при помощи проточного газового анализатора ULTRAMAT 6 фирмы Siemens. В качестве критерия каталитической активности и термической стабильности образцов используют температуру 50% превращения CO (Т50) в третьем, пятом и седьмом каталитическом цикле. Критерием термической стабильности используют разницу между активностью в седьмом и третьем цикле.

Полученные данные приведены в таблице 1.

Пример 2.

Приготовление катализатора на основе смешанного оксида церия и циркония, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (CexZr1-xO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 3.8·10-3 М раствора [PdEn2]3[RhOx3]2. Молярное соотношение Pd:Rh на поверхности носителя составляет 3:2. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 20 ч, затем в воздушной среде при температуре 115 °С в течение 9 ч. Термообработку образца проводят в воздушной среде при 600 °C в течение 1.5 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 3.

Приготовление катализатора на основе оксида церия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (CeO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 3.8·10-3 М раствора [Rh(NH3)6]2[PdOx2]3. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 4.

Приготовление катализатора на основе оксида алюминия, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл 0.05 М раствора [RhEn3](NO3)3. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 80-90 °С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 15.0 мл 0.075 М раствора (NH4)2[PdOx2]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 16 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят н в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 5.

Приготовление катализатора на основе смешанного оксида церия и циркония, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (CexZr1-xO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 0.11 М раствора [PdEn2](NO3)2. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 80-90 °С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 10.0 мл 0.75 М раствора (NH4)3[RhOx3]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 6.

Приготовление катализатора на основе оксида церия, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (CeO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 0.075 М раствора [Rh(NH3)6](NO3)3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 90°С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 10.0 мл 0.11 М раствора (NH4)2[PdOx2]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 7.

Способ по примеру 1, отличающийся тем, что термообработку образцов проводят в токе смеси 5 об.% водорода в аргоне при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 8.

Способ по примеру 1, отличающийся тем, что термообработку образцов проводят в токе азота при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 9 (сравнительный).

Приготовление катализатора на основе оксида алюминия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл совместного раствора нитратов родия и палладия с концентрацией 0.05 М Rh и 0.075 М Pd. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 105 °С в течение 6 ч. Термообработку образца проводят на воздухе при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 207.
25.08.2017
№217.015.b13a

Быстровозводимое каркасное здание

Изобретение относится к области строительства, в частности к быстровозводимым каркасным зданиям. Технический результат изобретения заключается в повышении прочности конструкции. Быстровозводимое каркасное здание содержит фундамент, стены, межэтажные перекрытия. Стены здания состоят из двух...
Тип: Изобретение
Номер охранного документа: 0002613060
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b207

Порошковая проволока для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника,...
Тип: Изобретение
Номер охранного документа: 0002613118
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b44e

Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр...
Тип: Изобретение
Номер охранного документа: 0002614023
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b568

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор...
Тип: Изобретение
Номер охранного документа: 0002614181
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b57e

Способ определения статического давления в некалиброванной камере высокого давления

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для...
Тип: Изобретение
Номер охранного документа: 0002614197
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
Показаны записи 31-40 из 44.
19.12.2019
№219.017.ef23

Способ переработки гидролизной серной кислоты

Изобретение относится к неорганической химии и может быть использовано в бумажной, лакокрасочной, пищевой и строительной промышленности. Для переработки гидролизной серной кислоты осуществляют экстракцию из нее скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ. Промывают насыщенный...
Тип: Изобретение
Номер охранного документа: 0002709369
Дата охранного документа: 17.12.2019
24.12.2019
№219.017.f1b5

Способ получения композиций на основе оксидов циркония и церия

Изобретение может быть использовано при получении трехмаршрутных катализаторов для очистки выхлопных газов. Способ получения композиций на основе оксидов циркония и церия, применяемых в составе трехмаршрутных катализаторов, включает приготовление раствора, содержащего нитраты циркония, церия,...
Тип: Изобретение
Номер охранного документа: 0002709862
Дата охранного документа: 23.12.2019
20.02.2020
№220.018.03fb

Способ получения порошков диоксида циркония со сфероидальной формой частиц

Изобретение относится к золь-гель технологии получения материалов на основе диоксида циркония со сфероидальной формой частиц. Может использоваться при получении порошков для плазменного напыления, горячего и холодного прессования, лазерного спекания. Готовят водный раствор водорастворимых...
Тип: Изобретение
Номер охранного документа: 0002714452
Дата охранного документа: 17.02.2020
18.03.2020
№220.018.0c9f

Способ переработки гидролизной кислоты

Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение...
Тип: Изобретение
Номер охранного документа: 0002716693
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e40

Способ получения гранулированных частиц гидроксиапатита

Изобретение относится к способам получения гранулированных частиц гидроксиапатита. Способ получения гранулированных частиц гидроксиапатита включает приготовление прекурсоров в виде растворов, содержащих ионы кальция, ионы аммония и фосфат-ионы, формирование осадка гидроксиапатита из растворов...
Тип: Изобретение
Номер охранного документа: 0002717275
Дата охранного документа: 19.03.2020
12.04.2023
№223.018.4295

Способ получения порошков гидратированного оксида циркония, обладающих высокой удельной поверхностью

Изобретение относится к неорганической химии и может быть использовано при изготовлении катализаторов. Сначала получают водный раствор соли циркония. Затем осаждают гидратированный оксид циркония путем дозирования в реакционный объём полученного раствора, в котором поддерживают постоянное...
Тип: Изобретение
Номер охранного документа: 0002765924
Дата охранного документа: 04.02.2022
12.04.2023
№223.018.443e

Способ получения радионуклидного генератора актиния-228

Изобретение относится к способу получения радионуклидного генератора актиния-228. В качестве сорбента актиния-228 используют твердый экстрагент, содержащий в качестве активного компонента моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты, а в качестве элюента используют раствор...
Тип: Изобретение
Номер охранного документа: 0002736600
Дата охранного документа: 19.11.2020
12.04.2023
№223.018.4513

Установка для извлечения меди из кислых растворов

Изобретение относится к установкам по очистке промышленных стоков, в частности к установкам по извлечению меди из кислых оборотных травильных растворов Установка для извлечения содержит ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через...
Тип: Изобретение
Номер охранного документа: 0002763907
Дата охранного документа: 11.01.2022
12.04.2023
№223.018.4533

Способ извлечения меди из кислых растворов

Изобретение относится к технической химии, а именно к способу извлечения меди из кислых оборотных травильных растворов, образующихся в производстве плоского проката. Извлечение меди из кислых растворов проводят сорбцией с образованием обезмеженного раствора и насыщенного сорбента. В качестве...
Тип: Изобретение
Номер охранного документа: 0002759979
Дата охранного документа: 19.11.2021
23.05.2023
№223.018.6e46

Способ переработки сбросного скандийсодержащего раствора уранового производства

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов. Способ включает операцию экстракции скандия на твердом экстрагенте ТВЭКС, реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на...
Тип: Изобретение
Номер охранного документа: 0002795930
Дата охранного документа: 15.05.2023
+ добавить свой РИД