×
16.06.2023
223.018.7a2f

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА АВТОМОБИЛЬНОГО ТРЕХМАРШРУТНОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Предложен способ производства автомобильного трехмаршрутного катализатора. Способ содержит стадии приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль модификатора и раствор соли драгоценных металлов; нанесение суспензии на субстрат, сушку и обжиг. На стадии приготовления водной суспензии помол порошков композиции на основе оксидов церия и циркония и оксида алюминия проводят совместно. В качестве соли модификатора используют нитрат или ацетат бария. Добавку модификатора к суспензии проводят перед добавкой драгоценных металлов. Добавку модификаторов проводят при перемешивании и поддержании уровня рН суспензии в диапазоне от 4 до 7 ед. Регулирование pH осуществляют за счет добавления раствора уксусной кислоты в случае, если pH больше 7 ед., и добавления раствора тетраэтиламмония гидроксида в случае, если значение pH меньше 4 ед. Добавку драгоценных металлов в суспензию проводят после выдержки суспензии с модификатором не менее чем 120 с. 3 з.п. ф-лы, 1 ил.

Изобретение относится к способу производства автомобильного трехмаршрутного катализатора с повышенной каталитической активностью, предназначенного для очистки выхлопных газов автомобилей с бензиновыми двигателями.

В результате сгорания бензинового топлива образуется три основные группы загрязнителей: несгоревшие углеводороды, оксид углерода и оксиды азота. Для обеспечения одновременного окисления угарного газа, углеводородов и восстановления оксидов азота применяется трехмаршрутный катализатор (TWC). Такой тип катализаторов функционирует в очень жестких условиях, характеризующихся высокой температурой (>1000 C) и постоянными флуктуациями состава газовой фазы. В этих условиях наибольшую эффективность показали системы, каталитически активными компонентами, которых являются платиновые металлы, такие как Pt, Pd и Rh.

Существенную роль играют носители платиновых металлов, а также различные добавки, служащие в качестве промоторов. В качестве носителей драгоценных металлов используются ©-Al2O3 стабилизированный ZrO2, La2O3, и другими оксидными добавками, а также композиции на основе оксидов церия и циркония. Применение композиций на основе оксидов церия и циркония в TWC связанно с их способностью накапливать и высвобождать кислород из кристаллической решетки. Это свойство позволяет компенсировать колебания концентрации кислорода в отработавших газах, связанных с особенностями работы двигателя и поддерживать содержание кислорода на поверхности катализатора близким к стехиометрии. Благодаря этому достигается одновременное эффективное протекание окислительных и восстановительных реакций.

При синтезе катализаторов на основе платиновых металлов используются дополнительные модификаторы. Так, например, в [T.Y. Chou, C.H. Leu, C.T. Yeh. Effects of the addition of lanthana on the thermal stability of alumina-supported palladium // Catalysis Today 26 (1995) 53-58.] обнаружили, что добавление оксида лантана к Pd/Al2O3 к катализатору не только улучшает термическую стабильность г-Al2O3, но и смещает температуру перехода PdO – Pd в область выше 800 оC, что является барьером к образованию и спеканию металлического палладия при высокой температуре работы катализатора.

Кроме того, считается, что путем использования модифицирующих добавок, в частности щелочноземельных и редкоземельных d – элементов можно изменить каталитические свойства Pd так, чтобы он восстанавливал NOx также хорошо, как окислял CO и углеводороды. [T. Kobayashi, T. Yamada, K. Kayano. Applied Catalysis B: Environmental 30 (2001) 287–292]. С помощью метода РФЭС сделано предположение, что добавка Ba увеличивает электронную плотность вокруг Pd, который вероятно начинает обладать электронной конфигурацией, подобной Rh, и это придает палладию каталитические свойства сходные с родием.

Таким образом, свойства TWC, а именно свойства активных компонентов Pd и Rh, меняются после введения модификаторов. Наиболее перспективным и используемым на данный момент модификатором является барий. Однако в литературе комплексно не рассмотрен вопрос влияния способа и порядка введения бария и других модификаторов на свойства носителей и активных компонентов.

Известен способ [US20140241964A1, приор. от 26.02.2013, опубл. 28.08.2014, МПК B01J23/44, B01D53/945, F01N3/101] получения катализатора для очистки выхлопных газов внутреннего сгорания, который состоит из подложки и слоя с активным компонентом на частицах носителя, который имеет неравномерное распределение благородного металла или нескольких благородных металлов. Создание градиента концентраций благородных металлов осуществляется за счет того, что отсутствует дополнительная стадия пропитки одним из металлов частиц оксида (возможно, обоих металлов), а в суспензии присутствует их растворимые соли. Из данной суспензии на кордиеритовом субстрате формируется покрытие и во время сушки разные металлы обладают разной мобильностью, которую также можно контролировать введением солей с различными анионами (например, нитрат-ионом и карбоксилат-ионом). Преимуществом данного способа является возможность сконцентрировать благородные металлы на поверхности слоя за счет разной сорбционной способности соединений благородных металлов. Недостатком данного метода является отсутствие возможности контролируемого внесения модифицирующих добавок, ввиду чего в восстановительных условиях газовой среды возможно образование на поверхности оксидных носителей частиц металлического палладия склонного к спеканию при высокой температуре, что приводит к термической дезактивации катализатора.

Наиболее близким к данному изобретению является способ [WO2013022958A1, приор. от 10.08.2011, опубл. 14.02.2014, МПК B01D53/945, Y02T10/22, B01J37/0215] получения катализатора, способного одновременно перерабатывать оксиды азота, монооксид углерода и углеводороды в выбросах выхлопных газов в менее токсичные соединения.

Результат достигается тем, что покрытие катализатора содержит композицию на основе оксидов церия и циркония, металл платиновой подгруппы, оксид алюминия, стабилизированный оксидом лантана, соединения бария. Способ производства таких катализаторов состоит из нескольких стадий: приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль модификатора и раствор соли драгоценных металлов; нанесение суспензии на субстрат, сушку и обжиг.

Стадия приготовления водной суспензии содержит следующие технологические операции: приготовление водной суспензии порошка композиции на основе оксидов церия и циркония, приготовление водной суспензии порошка оксида алюминия, смешение полученных суспензий с получением общей суспензии. Приготовление водной суспензии порошка композиции на основе оксидов церия и циркония осуществляют смешением воды, основания (например, гидроксида тетраэтиламмония, гидроксида тетраметиламмония, гидроксида тетрапропиламмония, гидроксида тетрабутиламмония) и порошка композиции на основе оксидов церия и циркония, измельчением полученной суспензии, добавлением соли переходного металла (например, Pd, Cu, Mn или Ni) к суспензии. Приготовление водной суспензии порошка оксида алюминия осуществляют смешением воды и порошка оксида алюминия, измельчением полученной суспензии в присутствии уксусной кислоты, добавлением соли карбоната бария или карбоната кальция.

Преимущество способа - высокая каталитическая активность в реакциях восстановления оксидов азота при отсутствии родия в составе катализатора. Недостаток способа - сложность исполнения изобретения, большое количество технологических операций, а также необходимость использования дорогостоящих органических соединений на стадии приготовления суспензии композиции на основе оксидов церия и циркония.

Технической проблемой, на решение которой направленно изобретение, является необходимость повышения каталитической активности, а также сложность процесса производства трехмаршрутных катализаторов.

Технический результат, достигаемый при реализации изобретения, заключается в увеличении термической стабильности композиции на основе оксидов церия, что приводит к повышению каталитической активности в реакциях конверсии монооксида углерода, углеводородов и оксидов азота. Более того, достигается снижение количества операций процесса производства автомобильного трехмаршрутного катализатора.

Заявленный способ производства автомобильных трехмаршрутных катализаторов с повышенной каталитической активностью содержит следующие стадии: приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль бария и раствор соли драгоценных металлов; нанесение суспензии на субстрат, сушку и обжиг. Заявленный технический результат достигается за счет модифицирования поверхности оксидных носителей с выдержкой суспензии при поддержании заданного уровня pH до введения солей драгоценных металлов.

Известно, что модифицирование оксида алюминия является наиболее распространенным и эффективным способом повышения его термической устойчивости. Так, например, добавка бария в качестве модификатора приводит к повышению удельной поверхности оксида алюминия за счет ингибирования образования корунда при воздействии высоких температур. В то же время, авторами настоящего изобретения было обнаружено, что взаимодействие бария и композиции на основе оксидов церия и циркония приводит к снижению удельной поверхности и пористости последней при воздействии высоких температур. Такое взаимодействие может вызывать образование отдельной фазы цирконата бария на поверхности композиции на основе оксидов церия и циркония, что в свою очередь вызывает скачкообразное повышение коэффициентов диффузии компонентов системы и может приводить к существенному снижению удельной поверхности и объема пор композиции в целом. В свою очередь, существенное снижение удельной поверхности и объема пор композиции в совокупности с образованием на поверхности композиции фазы цирконата бария, затрудняющей поглощение и выделение кислорода, может обуславливать снижение кислородной емкости каталитических систем на основе указанной выше композиции. Наиболее очевидным вариантом снижения негативного влияния бария на свойства композиции на основе оксидов церия и циркония является пространственное разнесение оксида алюминия и композиции на основе оксидов церия и циркония по различным слоям, при этом барий может быть добавлен только в слой, содержащий оксид алюминия. Однако, применение данного способа приводит к значительному усложнению технологического процесса изготовления катализаторов.

Авторами изобретения было обнаружено, что за счет регулирования значения pH суспензии оксида алюминия и композиции на основе оксидов церия и циркония в воде и очередности внесения драгоценных металлов и бария в указанную суспензию может быть обеспечена преимущественная локализация бария на оксиде алюминия. Такая преимущественная локализация бария может быть выполнена благодаря высокому значению удельной поверхности порошков оксида алюминия, обеспечивающих преимущественную сорбцию бария из жидкой фазы суспензии.

Реализация настоящего изобретения включает в себя введение бария в водную суспензию, содержащую оксид алюминия и композицию на основе оксидов церия и циркония при поддержании значения pH в диапазоне, при котором сорбция бария происходит преимущественно на поверхности оксида алюминия. Таким образом, становится возможно существенно снизить негативное влияния бария на свойства композиции на основе оксидов церия и циркония. Кроме того, сорбция модификатора на поверхности оксидных носителей до введения драгоценных металлов приводит к уменьшению количества свободных сорбционных центров на поверхности оксидных носителей, предназначенных для драгоценных металлов. В условиях, когда часть сорбционных центров поверхности оксидных носителей занята ионами модификатора, становится возможным с одной стороны, обеспечить повышение равномерности распределения ионов драгоценных металлов на поверхности оксидных носителей, и существенное повышение взаимодействия фазы модификатора с фазой драгоценных металлов, что в совокупности может понижать миграцию драгоценных металлов и спекание в условиях воздействия высоких температур и постоянных флуктуаций состава газовой среды в процессе работы трехмаршрутного катализатора.

Сущность изобретения поясняется таблицей параметров каталитической активности для образцов блоков каталитических.

На первой стадии производства автомобильного трехмаршрутного катализатора с повышенной каталитической активностью готовят водную суспензию, содержащую композицию на основе оксидов церия и циркония, оксид алюминия, соль бария и раствор соли драгоценных металлов. Эта стадия содержит перечисленные ниже технологические операции.

Первоначально проводят введение в реакционный объем воды, которая необходима для приготовления суспензии, а также для контроля pH. Количество вводимой в реакционный объем воды не является принципиальным. Однако предпочтительно вводить такое количество воды, чтобы содержание твердого в формируемой суспензии составляло от 15 до 45 мас.%, так как из уровня техники известно, что такое содержание твердого более удобно при формировании покрытия на субстрате. Может быть использована очищенная вода, в том числе дистиллированная или деионизированная вода. Предпочтительно, в качестве жидкой среды использовать дистиллированную воду.

Далее проводят смешение порошков оксида алюминия и композиции на основе оксидов церия и циркония с получением смеси порошков. В состав композиции могут входить оксиды церия, циркония, иттрия, лантана и празеодима, предпочтительно использовать композицию состава Ce0.33Zr0.57Y0.06La0.04O2, где подстрочные индексы обозначают мольную долю компонента в композиции. В качестве оксида алюминия предпочтительно использовать оксид алюминия, стабилизированный оксидом циркония или оксидом лантана.

После полученную смесь порошков вводят при перемешивании в реакционный объем, заполненный водой, с получением суспензии.

Далее проводят помол суспензии как описано в прототипе. Наиболее предпочтительно проводить помол в бисерной мельнице, обеспечивая достижение значения d90 не более 9,5 мкм. Здесь и далее термин «d90» обозначает диаметр с процентным содержания весовой доли частиц заданного размера менее 90% от общего содержания. Указанная граница размера частиц является общепринятой в технологии производства трехмаршрутных катализаторов, при достижении которой, удается достичь необходимой вязкости суспензии и адгезии покрытия, формируемого на кордиеритовом субстрате. Во время помола возможно использование уксусной кислоты как описано в прототипе.

После проводят введение соли модификатора в помолотую суспензию при постоянном перемешивании. В качестве соли модификатора могут быть использованы нитрат или ацетат бария, предпочтительно использовать нитрат бария. Массовая доля бария в пересчете на оксид бария в каталитически активном покрытии может находиться в диапазоне от 1,5 до 5 мас. %, а еще лучше от 2 до 3 мас. %. Значение pH суспензии при введении соли модификатора необходимо поддерживать на уровне от 4 до 7 ед. включительно, предпочтительно от 4 до 5 ед. включительно. Регулирование значения pH может быть выполнено за счет введения раствора кислоты, если значение pH суспензии превысило верхний допустимый диапазон, и введения водного раствора основания, если значение pH суспензии превысило нижний допустимый диапазон. Наиболее предпочтительно использовать раствор уксусной кислоты, а в качестве основания раствор тетраэтиламмония гидроксида. Суспензию необходимо выдержать не менее 120 секунд, а еще лучше 180 секунд для установления равновесия процесса сорбции.

Далее проводят введение солей драгоценных металлов в суспензию при постоянном перемешивании. Соли драгоценных металлов предпочтительно вводить в суспензию в виде растворов. В качестве растворов солей драгоценных металлов можно использовать растворы солей нитрата палладия, нитрата родия или их смесь, предпочтительно использовать смесь растворов нитрата палладия и нитрата родия. Содержание драгоценных металлов описано в прототипе, предпочтительно оно должно находится в диапазоне от 5 до 100 г/фт3.

На второй стадии производства трехмаршрутного катализатора проводят нанесение суспензии на субстрат методом вакуумного всасывания с получением блока каталитического.

На третьей стадии осуществления изобретения проводят термическое закрепление каталитически активного покрытия путем сушки и обжига.

Сущность изобретения может быть проиллюстрирована следующими примерами.

Пример 1

В химический стакан при перемешивании вводят 518 г воды с приготовлением реакционного объема. Далее готовят смесь порошков 195,3 г оксида алюминия и 83,7 г Ce0.33Zr0.57Y0.06La0.04O2. Полученную смесь порошков при перемешивании вводят в реакционный объем с получением суспензии. Полученную суспензию размалывают при использовании бисерной мельницы до значения d90 равного 7 мкм. Далее в суспензию вводят 15,9 г соли нитрата бария, причем значение pH в реакционном объеме поддерживают в диапазоне от 4 до 7 ед. Регулирование pH осуществляют за счет добавления раствора уксусной кислоты в случае, если pH больше 7 ед. и добавления раствора тетраэтиламмония гидроксида в случае, если значение pH меньше 4 ед. Затем суспензию выдерживают в течение 120 секунд при перемешивании. Затем смешивают 8,9 г раствора нитрата палладия (массовая концентрация палладия в растворе 15,35%) и 3,0 г раствора нитрата родия (массовая концентрация родия в растворе 9,11%) с получением смеси растворов ДМ. Далее в суспензию вводят смесь растворов ДМ. Полученную суспензию используют для формирования покрытия на кордиеритовом субстрате. Полученный каталитический блок сушат при 120 оС в течение 15 минут и обжигают при 550 оС в течение 40 минут.

Пример 2

В химический стакан при перемешивании вводят 518 г воды с получением реакционного объема. Далее готовят смесь порошков 195,3 г оксида алюминия и 83,7 г Ce0.33Zr0.57Y0.06La0.04O2. Затем полученную смесь порошков при перемешивании вводят в реакционный объем с получением суспензии. Полученную суспензию размалывают при использовании бисерной мельницы до значения d90 равного 6 мкм. Далее в суспензию вводят 7,74 г соли ацетата бария, причем значение pH в реакционном объеме поддерживают в диапазоне от 4 до 7 ед. Регулирование pH осуществляют за счет добавления раствора уксусной кислоты в случае, если pH больше 7 ед. и добавления раствора тетраэтиламмония гидроксида в случае, если значение pH меньше 4 ед. Затем суспензию выдерживают в течение 180 секунд при перемешивании. Затем смешивают 7,13 г раствора нитрата палладия (массовая концентрация палладия в растворе 15,35%) и 2,4 г раствора нитрата родия (массовая концентрация родия в растворе 9,11%) с получением смеси растворов ДМ. Далее в суспензию вводят смесь растворов ДМ. Полученную суспензию используют для формирования покрытия на кордиеритовом субстрате. Полученный каталитический блок сушат при 120 оС в течение 15 минут и обжигают при 550 оС в течение 40 минут.

Пример 3 (сравнительный)

В химический стакан при перемешивании вводят 518 г воды с приготовлением реакционного объема. Далее готовят смесь порошков 195,3 г оксида алюминия и 83,7 г Ce0.33Zr0.57Y0.06La0.04O2. Полученную смесь порошков при перемешивании вводят в реакционный объем с получением суспензии. Полученную суспензию размалывают при использовании бисерной мельницы до значения d90 равного 10 мкм. Затем смешивают 8,9 г раствора нитрата палладия (массовая концентрация палладия в растворе 15,35%) и 3,0 г раствора нитрата родия (массовая концентрация родия в растворе 9,11%) с получением смеси растворов ДМ. Далее в суспензию вводят смесь растворов ДМ. Затем в суспензию вводят 15,9 г соли нитрата бария. Полученную суспензию используют для формирования покрытия на кордиеритовом субстрате. Полученный каталитический блок сушат при 120 оС в течение 15 минут и обжигают при 550 оС в течение 40 минут.

Пример 4 (сравнительный)

В химический стакан при перемешивании вводят 518 г воды с приготовлением реакционного объема. Далее готовят смесь порошков 195,3 г оксида алюминия и 83,7 г Ce0.33Zr0.57Y0.06La0.04O2. Полученную смесь порошков при перемешивании вводят в реакционный объем с получением суспензии. Полученную суспензию размалывают при использовании бисерной мельницы до значения d90 равного 10 мкм. Затем смешивают 7,13 г раствора нитрата палладия (массовая концентрация палладия в растворе 15,35%) и 2,4 г раствора нитрата родия (массовая концентрация родия в растворе 9,11%) с получением смеси растворов ДМ. Далее в суспензию вводят смесь растворов ДМ. Далее в суспензию вводят 7,74 г соли ацетата бария. Полученную суспензию используют для формирования покрытия на кордиеритовом субстрате. Полученный каталитический блок сушат при 120 оС в течение 15 минут и обжигают при 550 оС в течение 40 минут.

Определение параметров каталитической активности всех образцов осуществляли при помощи газоаналитического стенда Horiba CTSJ.2003.12. Было проведено определение температуры начала работы катализатора (температуры 50 % - ой конверсии или «температуры зажигания» – «Light-off» тест) и максимальной конверсии в пульсирующем режиме при температуре 400 ОС («Perturbation» тест). Измерение динамической кислородной емкости (OSC) для всех образцов проводили методом отклика в реакции окисления СО.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 207.
25.08.2017
№217.015.a4b6

Способ подготовки поверхности полиимида под химическую металлизацию

Изобретение относится к способам производства гибких печатных плат, соединительных кабелей, шлейфов, микросхем. Предложен способ подготовки поверхности полиимида под химическое осаждение медного покрытия, заключающийся в травлении полиимида водным раствором щелочи, содержащим 150-250 г/л NaOH...
Тип: Изобретение
Номер охранного документа: 0002607627
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5b3

Натриевая соль 2-метилтио-6-циано-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4н)-она, тригидрат

Изобретение относится к натриевой соли 2-метилтио-6-циано-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4Н)-она, тригидрату, которая проявляет противовирусное действие в отношении гриппа Технический результат: получено новое соединение, обладающее противовирусной активностью. 1 ил., 2 табл., 4 пр.
Тип: Изобретение
Номер охранного документа: 0002607628
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ea

Способ обогащения пиритизированных высококремнистых маложелезистых бокситов

Изобретение относится к цветной и черной металлургии и может быть использовано для производства глинозема и высокоглиноземистого цемента из низкокачественных пиритизированных высококремнистых маложелезистых бокситов. Способ включает обжиг боксита, причем обожженный боксит в зоне охлаждения...
Тип: Изобретение
Номер охранного документа: 0002611871
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ab77

Полупроводниковый сенсорный элемент для определения ионов свинца в водных растворах и способ его изготовления

Полупроводниковый сенсорный элемент для определения ионов свинца в водном растворе содержит в качестве чувствительного материала тонкую пленку сульфида свинца, допированную йодом и нанесенную на диэлектрическую подложку. Формирование пленки осуществляется путем ее осаждения из реакционной...
Тип: Изобретение
Номер охранного документа: 0002612358
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.abaa

Способ определения содержания бактерий с использованием в качестве метки модифицированных магнитных наночастиц

Изобретение относится к биотехнологии, а именно к электрохимическому иммуноанализу. Предложен способ определения содержания грамотрицательных бактерий в анализируемой среде. В водной среде при температуре 37°С конъюгируют бактерии с магнитными наночастицами FeO, Fe, NiFeO или MgFeO,...
Тип: Изобретение
Номер охранного документа: 0002612143
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ac38

Натриевая соль диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-c]-1,2,4-триазин-3,8-дикарбоновой кислоты, моногидрат

Изобретение относится к натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло-[5,1-с]-1,2,4-триазин-3,8-дикарбоновой кислоты моногидрату, обладающему антигликирующей активностью Технический результат: получено новое соединение, обладающее антигликирующей активностью, которое может быть...
Тип: Изобретение
Номер охранного документа: 0002612300
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.ac5b

Способ потенциометрического определения скорости генерирования пероксильных радикалов

Изобретение относится к новому способу определения скорости генерирования пероксильных радикалов. Технический результат: разработан новый способ определения скорости генерирования пероксильных радикалов, который повышает точность, достоверность и воспроизводимость результатов, а также расширяет...
Тип: Изобретение
Номер охранного документа: 0002612132
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b067

V-образно спаренный шнековый движитель для плавсредств (варианты)

Изобретение относится к судостроению и может быть использовано на плавсредствах, как на надводных судах, так и на подводных судах. V-образно спаренный шнековый движитель для плавсредств в варианте надводного судна содержит в кормовой части на транцевой плите расположенные под углом шнеки,...
Тип: Изобретение
Номер охранного документа: 0002613472
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b12d

Способ очистки загрязненного сырья для разделительного производства

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002613157
Дата охранного документа: 15.03.2017
Показаны записи 21-30 из 36.
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
18.12.2019
№219.017.ee7a

Способ синтеза оксида титана

Изобретение может быть использовано при получении пигментного оксида титана для пищевой и косметической промышленности. Способ синтеза оксида титана с фазовой модификацией анатаз включает приготовление водного раствора хлорида титанила и гидролиз указанного раствора при добавлении аммиака с...
Тип: Изобретение
Номер охранного документа: 0002709093
Дата охранного документа: 13.12.2019
19.12.2019
№219.017.ef23

Способ переработки гидролизной серной кислоты

Изобретение относится к неорганической химии и может быть использовано в бумажной, лакокрасочной, пищевой и строительной промышленности. Для переработки гидролизной серной кислоты осуществляют экстракцию из нее скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ. Промывают насыщенный...
Тип: Изобретение
Номер охранного документа: 0002709369
Дата охранного документа: 17.12.2019
24.12.2019
№219.017.f1b5

Способ получения композиций на основе оксидов циркония и церия

Изобретение может быть использовано при получении трехмаршрутных катализаторов для очистки выхлопных газов. Способ получения композиций на основе оксидов циркония и церия, применяемых в составе трехмаршрутных катализаторов, включает приготовление раствора, содержащего нитраты циркония, церия,...
Тип: Изобретение
Номер охранного документа: 0002709862
Дата охранного документа: 23.12.2019
20.02.2020
№220.018.03fb

Способ получения порошков диоксида циркония со сфероидальной формой частиц

Изобретение относится к золь-гель технологии получения материалов на основе диоксида циркония со сфероидальной формой частиц. Может использоваться при получении порошков для плазменного напыления, горячего и холодного прессования, лазерного спекания. Готовят водный раствор водорастворимых...
Тип: Изобретение
Номер охранного документа: 0002714452
Дата охранного документа: 17.02.2020
18.03.2020
№220.018.0c9f

Способ переработки гидролизной кислоты

Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение...
Тип: Изобретение
Номер охранного документа: 0002716693
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e40

Способ получения гранулированных частиц гидроксиапатита

Изобретение относится к способам получения гранулированных частиц гидроксиапатита. Способ получения гранулированных частиц гидроксиапатита включает приготовление прекурсоров в виде растворов, содержащих ионы кальция, ионы аммония и фосфат-ионы, формирование осадка гидроксиапатита из растворов...
Тип: Изобретение
Номер охранного документа: 0002717275
Дата охранного документа: 19.03.2020
12.04.2023
№223.018.4295

Способ получения порошков гидратированного оксида циркония, обладающих высокой удельной поверхностью

Изобретение относится к неорганической химии и может быть использовано при изготовлении катализаторов. Сначала получают водный раствор соли циркония. Затем осаждают гидратированный оксид циркония путем дозирования в реакционный объём полученного раствора, в котором поддерживают постоянное...
Тип: Изобретение
Номер охранного документа: 0002765924
Дата охранного документа: 04.02.2022
12.04.2023
№223.018.443e

Способ получения радионуклидного генератора актиния-228

Изобретение относится к способу получения радионуклидного генератора актиния-228. В качестве сорбента актиния-228 используют твердый экстрагент, содержащий в качестве активного компонента моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты, а в качестве элюента используют раствор...
Тип: Изобретение
Номер охранного документа: 0002736600
Дата охранного документа: 19.11.2020
12.04.2023
№223.018.4513

Установка для извлечения меди из кислых растворов

Изобретение относится к установкам по очистке промышленных стоков, в частности к установкам по извлечению меди из кислых оборотных травильных растворов Установка для извлечения содержит ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через...
Тип: Изобретение
Номер охранного документа: 0002763907
Дата охранного документа: 11.01.2022
+ добавить свой РИД