×
16.06.2023
223.018.79d3

Результат интеллектуальной деятельности: СПОСОБ ВИЗУАЛИЗАЦИИ НЕОДНОРОДНОСТЕЙ ПЛОСКОЙ ПОЛУПРОВОДНИКОВОЙ ПОВЕРХНОСТИ В ТЕРАГЕРЦОВОМ ИЗЛУЧЕНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой поверхностью. Заявленный способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении включает воздействие на поверхность р-поляризованным излучением, для которого вещественная часть диэлектрической проницаемости полупроводника отрицательна, преобразование излучения в направляемые поверхностью поверхностные плазмон-поляритоны (ППП) и измерение интенсивности излучения, испускаемого с трека ППП. Излучение выбирают монохроматическим с частотой, при которой длина распространения ППП не превышает длину волны излучения, пучок зондирующего излучения коллимируют и направляют под углом генерации ППП на основание призмы нарушенного полного внутреннего отражения, обращенное к контролируемому участку поверхности и размещенное параллельно ему в пределах глубины проникновения поля ППП в окружающую среду. При этом регистрируют пространственное распределение интенсивности излучения одновременно по всему поперечному сечению пучка, выходящего из призмы. Технический результат – создание способа визуализации неоднородностей плоской поверхности полупроводника в терагерцовом излучении, основанного на преобразовании зондирующего излучения в поверхностные плазмон-поляритоны (ППП), направляемые контролируемой поверхностью, и детектировании излучения, испускаемого с трека ППП вследствие сохранения их оптической связи с элементом преобразования, и позволяющего упростить процедуру измерений, уменьшить ее трудоемкость и продолжительность, а также повысить латеральное разрешение измерений. 2 ил.

Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой поверхностью [1]. Изобретение может найти применение в микроэлектронике при производстве полупроводниковых подложек (вэйферов) микроэлектронных схем, при создании полупроводниковых гетероструктур высокоскоростной оптоэлектроники (квантово-каскадных лазеров, солнечных элементов, светодиодов, биполярных транзисторов, фотодетекторов, элементов полупроводниковой интегральной оптики, преобразователей света и других устройств оптоэлектроники).

Для обнаружения дефектов на поверхности полупроводниковых вэйферов традиционно применяют метод сравнения амплитудно-фазовых характеристик оптического излучения, отраженного от эталонного и исследуемого участков поверхности [2]. Основным недостатком такого метода являются большая трудоемкость и продолжительность измерений, ввиду необходимости совместного сканирования приемника и источника излучения над поверхностью изделия.

Известно применение метода микроскопии темного поля для визуализации неоднородностей на поверхности вэйферов [3]. Однако этот метод применим только для обнаружения неоднородностей на поверхности прозрачных объектов, причем он требует применения очень мощного источника излучения и дорогостоящей оптической аппаратуры.

Известен способ визуального контроля оптической поверхности, включающий ввод лазерного излучения в тонкий слой прозрачной жидкости, помещенный между эталонной и контролируемой поверхностями оптических изделий и наблюдение света, рассеянного на аномалиях и дефектах поверхности [4]. Способ позволяет фиксировать наличие локальных аномалий поверхности без дорогостоящего оборудования, но является достаточно трудоемким, поскольку предполагает изготовление для каждого из контролируемого изделий прозрачного бездефектного эталона, сканирование пучка излучения по всей поверхности при условии постоянства эффективности ввода излучения в слой жидкости.

Известен оптический способ изучения и контроля качества поверхности заготовок микросхем с использованием ПЭВ ИК-диапазона, повышающий чувствительность рефлектометрических измерений [5]. Способ включает воздействие на поверхность заготовки монохроматическим ИК-излучением, для которого материал заготовки имеет отрицательную действительную часть диэлектрической проницаемости, преобразование излучения в пучок ПЭВ, направляемый поверхностью, последовательное освещение пучком контролируемого участка поверхности с различных направлений при одновременной регистрации трека и интегральной интенсивности пучка после преодоления им участка, а также обработку результатов измерений. Основными недостатками способа являются большая трудоемкость, низкое латеральное разрешение и большая продолжительность измерений.

Наиболее близким к заявляемому по технической сущности является способ обнаружения дефектов на поверхности полупроводника с помощью терагерцовых (ТГц) поверхностных плазмон-поляритонов (ППП) - разновидности ПЭВ [6]. Способ включает в себя воздействие на поверхность полупроводника серией идентичных импульсов p-поляризованного ТГц излучения, для которого вещественная часть диэлектрической проницаемости полупроводника отрицательна, преобразование излучения в пучок широкополосных ППП, пробег пучка ППП по контролируемой поверхности на макроскопическое расстояние (превышающее среднюю длину волны излучения на 2-3 порядка), преобразование пучка ППП в объемное излучение, регистрацию интегральной интенсивности этого излучения в различные фазы (стадии) импульсов, обработку результатов измерений и сравнение их с результатами, полученными на эталонном образце. Основными недостатками известного способа являются большие трудоемкость и продолжительность измерений, а также - их интегральный характер, сводящий на нет латеральное разрешение способа.

В основу изобретения поставлена задача разработки нового способа визуализации неоднородностей плоской поверхности полупроводника в терагерцовом излучении, основанного на преобразовании зондирующего излучения в поверхностные плазмон-поляритоны (ППП), направляемые контролируемой поверхностью, и детектировании излучения, испускаемого с трека ППП вследствие сохранения их оптической связи с элементом преобразования, и позволяющего упростить процедуру измерений, уменьшить ее трудоемкость и продолжительность, а также - повысить латеральное разрешение измерений, что делает возможным не только оценку размеров неоднородностей, но и локализацию их местоположения.

Сущность изобретения заключается в том, что в известном способе визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении, включающего воздействие на поверхность р-поляризованным излучением, для которого вещественная часть диэлектрической проницаемости полупроводника отрицательна, преобразование излучения в направляемые поверхностью поверхностные плазмон-поляритоны (ППП) и измерение интенсивности излучения, испускаемого с трека ППП, излучение выбирают монохроматическим с частотой, при которой длина распространения ППП не превышает длину волны излучения, пучок зондирующего излучения коллимируют и направляют под углом генерации ППП на основание призмы нарушенного полного внутреннего отражения, обращенное к контролируемому участку поверхности и размещенное параллельно ему в пределах глубины проникновения поля ППП в окружающую среду; при этом регистрируют пространственное распределение интенсивности излучения одновременно по всему поперечному сечению пучка, выходящего из призмы.

Упрощение процедуры измерений в предлагаемом способе, обусловливающее уменьшение ее трудоемкости и продолжительности, достигается в результате однократного использования в качестве зонда пучка коллимированного монохроматического излучения, воздействующего на весь контролируемый участок поверхности, и регистрации распределения интенсивности излучения одновременно по всему поперечному сечению пучка, выходящего из призмы.

Повышение латерального разрешения измерений достигается вследствие выбора такой длины волны излучения X, при которой длина распространения ППП L меньше X, а также в результате генерации ППП коллимированным пучком монохроматического излучения не в одной точке контролируемого участка поверхности, а по всей его площади, находящейся под основанием призмы НПВО; это позволяет судить об эффективности генерации 111111 (зависящей от наличия неоднородности на поверхности) в данной точки поверхности, а, значит, - о наличии на ней неоднородности и об оптических характеристиках этой неоднородности, по интенсивности излучения, испускаемого через призму НПВО с данной точки поверхности.

Изобретение поясняется чертежами: на Фиг. 1 представлена схема устройства, реализующего заявляемый способ; на Фиг. 2 - расчетные зависимости коэффициента отражения Rp р-составляющей излучения (λ=140 мкм) от угла его падения ϕ на структуру "ТРХ - (полиметилпентен) -воздушный зазор величиной h=20 мкм - слой ZnS толщиной d - InSb (антимонид индия)" при генерировании этим излучением ППП на поверхности InSb.

На Фиг. 1 цифрами обозначены: 1 - источник монохроматического ТГц излучения; 2 - коллиматор; 3 - поляризатор; 4 - призма НПВО; 5 - плоская поверхность полупроводникового изделия; 6 - зазор, отделяющий основание призмы 4 от поверхности 5; 7 - пьезокерамический актуатор, регулирующий зазор 6; 8 - неоднородность на поверхности 5; 9 - матрица фотоприемников ТГц излучения; 10 - устройство для накопления и обработки электрических сигналов от матрицы 9.

На Фиг. 2 цифрами обозначены зависимости Rp(ϕ), рассчитанные для различных значений толщины d слоя сульфида цинка: кривая 1 - в = 0; 2 - d = 0.5 мкм; 3 - d = 1.0 мкм; 4 - d = 1.5 мкм; 5 - d = 2.0 мкм.

Способ реализуется следующим образом.

Излучение источника 1 с помощью коллиматора 2 преобразуют в пучок параллельных лучей с некоторым распределением интенсивности по его поперечному сечению. Прошедшему через коллиматор 2 излучению придают p-поляризацию (относительно плоскости падения) с помощью поляризатора 3 и направляют на боковую грань призмы 4 таким образом, чтобы преломленный на этой грани пучок излучения падал на основание призмы 4 под углом генерации ППП на поверхности 5 полупроводникового изделия. Эванесцентное (затухающее по экспоненте) поле излучения, претерпевшего полное внутреннее отражение от основания призмы 4, проникает в зазор 6, регулируемый пьезокерамикой 7 и отделяющий призму 4 от поверхности 5, достигает ее и генерирует на ней (с некоторой эффективностью) ППП. Вследствие больших джоулевых потерь ППП рассеивают основную долю своей энергии в тепло на расстоянии L<λ (где L - длина распространения ППП); поэтому объемная волна, испускаемая ППП в призму 4 (вследствие сохранения с ней оптической связи), имеет интенсивность значительно меньшую по сравнению с интенсивностью падающего излучения. Поскольку L<λ, то интенсивность излучения, испускаемого с элементарной площадки основания призмы 4 размером, не превышающим длину волны излучения, пропорциональна эффективности генерации ППП на соответствующем элементарном участке поверхности 5. Наличие на поверхности 5 неоднородности 8 скажется на эффективности генерации ППП, а, следовательно, и на интенсивности излучения, испускаемого с соответствующей площадки основания призмы 4. Пучок излучения, исходящий от освещенного участка основания призмы 4, выходит через ее вторую боковую грань и падает на матрицу фотоприемников 9. Пиксели матрицы 9 вырабатывают пропорциональные их освещенности электрические сигналы, которые одновременно регистрируются устройством 10. Выполнив нормировку распределения интенсивности, регистрируемую матрицей 9 до и после внедрения поверхности 5 в эванесцентное поле излучения у основания призмы 4, исследователь может визуализировать распределение неоднородностей по поверхности 5. Более того, последовательное выполнение вышеописанных измерений позволяет изучать динамику распределения неоднородностей с временным разрешением, определяемым постоянной времени пикселей матрицы 9.

В качестве примера применения заявляемого способа рассмотрим возможность реализации метода ППП-микроскопии в ТГц диапазоне на примере антимонида индия (InSb) с собственной проводимостью. При численном моделировании воспользуемся моделью Друде-Лоренца для описания дисперсии диэлектрической проницаемости полупроводника [7]:

где ε - высокочастотная диэлектрическая проницаемость; ωL и ωT - частота продольных и поперечных колебаний кристаллической решетки, соответственно; Г - постоянная затухания колебаний кристаллической решетки; γ - столкновительная частота электронов проводимости. Не содержащий примесей InSb характеризуется следующими значениями вышеперечисленных параметров: ωр = 81.0 см-1; ε = 15.68; ωL = 190.4 см-1; ωT = 179.1 см-1; Г = 2.86 см-1; γ = 10.7 см-1 [7].

Расчеты по формуле (1) показали, что вещественная часть диэлектрической проницаемости ε' антимонида индия становится отрицательной (необходимое условие существования ППП) при λ ≥ 134 мкм. Выберем длину волны зондирующего излучения λ=140 мкм, соответствующую одному из "окон прозрачности" атмосферы для ТГц излучения. На такой λ величина sInSb = -1.614 + i ⋅ 2.936, а длина распространения ППП L≈138 мкм, т.е. L≤λ. Материалом призмы НПВО выберем слабодисперсный полимер ТРХ (полиметилпентен) с показателем преломления np=1.46; критический угол ϕcr для излучения с λ=140 мкм на границе раздела "ТРХ - воздух" равен 43°14'. Расчеты зависимости коэффициента отражения по мощности Rp для p-составляющей такого излучения от структуры "ТРХ - воздушный зазор величиной h=20 мкм - InSb" (схема Отто для генерации ППП методом НПВО [1]) показали, что в этих условиях наиболее эффективное преобразование зондирующего излучения в ППП (соответствует минимальному значению коэффициента отражения Rp min = 0.04 на зависимости Rp (ϕ)) достигается при угле падения ϕ=ϕ*=52°45'. Промоделируем эволюцию кривой Rp(ϕ) при нанесении на поверхность InSb "неоднородности" в виде непоглощающего слоя из сульфида цинка (ZnS) толщиной d и с показателем преломления 2.950. Результаты моделирования представлены на Фиг. 2. Видно, что с увеличением толщины d слоя минимум кривой Rp (ϕ) смещается к критическому углу ϕcr, а значение Rp min увеличивается. Поэтому, при угле падения ϕ=ϕ* (см. Фиг. 2) участкам поверхности InSb не содержащим слоя ZnS (кривая 1) будет соответствовать интенсивность выходящего из призмы пучка равная 0.04 (от ее значения до внедрения поверхности InSb в эванесцентное поле зондирующего излучения), а участкам со слоем толщиной (например) d=1.0 мкм (кривая 3) - интенсивность равная 0.13. Поскольку современная измерительная аппаратура позволяет надежно регистрировать изменение интенсивности ТГц излучения с точностью до долей процента [8], то можно надеяться, что заявляемый метод микроскопии позволит достичь для слоя ZnS вертикального разрешения не хуже 1 нм, а при использовании матрицы 9 с пикселями размером меньше λ (например, микроболометрической матрицы [9]) латерального разрешения, сравнимого с длиной волны излучения, т.е. немного хуже дифракционного предела Аббе в λ/2.

Таким образом, рассмотренный пример наглядно демонстрирует возможность визуализации заявляемым способом неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении, при которой существенно упрощается (по сравнению со способом-прототипом) процедура измерений, уменьшается ее трудоемкость и продолжительность, а также повышается до дифракционного предела Аббе латеральное разрешение измерений.

Источники информации:

[1] Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. - М: Наука, 1985. - 525 с.

[2] Shankar N.G. and Zhong Z.W. Defect detection on semiconductor wafer surfaces // Microelectron. Eng., 2005, V. 77, p. 337-346.

[3] Stokowski S. and Vaez-Iravani M. Wafer inspection technology challenges for ULSI manufacturing // AIP Conference Proceedings, 1998, V. 449, p. 405-415.

[4] Стойлов Ю.Ю., Старцев A.B., Яловой В.И. Способ визуально-оптического контроля поверхности // Патент RU 2502954 от 27.12.2013.

[5] Васильев А.Ф., Гушанская Н.Ю., Жижин Г.Н., Яковлев В.А. Применение спектроскопии ПЭВ для изучения и контроля качества поверхности заготовок микросхем // Оптика и спектроскопия, 1987, Т. 63, Вып. 3, с. 682-684.

[6] Yang Т., Li Y., Stantchev R., Zhu Y., Qin Y., Zhou X., and Huang W. Detection of defects on the surface of a semiconductor by terahertz surface plasmon polaritons // Applied Optics, 2016, V. 55, No. 15, p. 4139-4144. (прототип).

[7] Handbook of optical constants of solids 1998 Ed. by E.D. Palik. Academ. Press, USA. - 804 p.

[8] Lewis R.A. A review of terahertz detectors // J. Phys. D: Appl. Phys., 2019, V. 52, 433001.

[9] Демьяненко M.A., Есаев Д.Г., Овсюк B.H., Фомин Б.И., Асеев А.Л., Князев Б.А., Кулипанов Г.Н., Винокуров Н.А. Матричные микроболометрические приемники для инфракрасного и терагерцового диапазонов // Оптический журнал, 2009, Т. 76, Вып. 12, С. 5-11.

Способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении, включающий воздействие на поверхность р-поляризованным излучением, для которого вещественная часть диэлектрической проницаемости полупроводника отрицательна, преобразование излучения в направляемые поверхностью поверхностные плазмон-поляритоны (ППП) и измерение интенсивности излучения, испускаемого с трека ППП, отличающийся тем, что излучение выбирают монохроматическим с частотой, при которой длина распространения ППП не превышает длину волны излучения, пучок зондирующего излучения коллимируют и направляют под углом генерации ППП на основание призмы нарушенного полного внутреннего отражения, обращенное к контролируемому участку поверхности и размещенное параллельно ему в пределах глубины проникновения поля ППП в окружающую среду; при этом регистрируют пространственное распределение интенсивности излучения одновременно по всему поперечному сечению пучка, выходящего из призмы.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 22.
25.08.2017
№217.015.b6c1

Устройство для обнаружения неоднородностей на плоских гранях потока однотипных проводящих изделий в инфракрасном излучении

Изобретение относится к оптическим методам контроля качества поверхности металлов и полупроводников, а именно к инфракрасной (ИК) амплитудной рефлектометрии. Устройство содержит источник p-поляризованного монохроматического излучения, два элемента преобразования излучения в ПЭВ, приемник...
Тип: Изобретение
Номер охранного документа: 0002614660
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.e2fc

Метод и устройство для регистрации изображений фазовых микрообъектов в произвольных узких спектральных интервалах

Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Способ заключается в том, что прошедшее через микрообъект...
Тип: Изобретение
Номер охранного документа: 0002626061
Дата охранного документа: 21.07.2017
20.01.2018
№218.016.119b

Способ определения диэлектрической проницаемости металла в терагерцовом диапазоне спектра

Изобретение относится к области оптических измерений и касается способа определения диэлектрической проницаемости металла в терагерцовом диапазоне спектра. Способ включает в себя возбуждение зондирующим пучком поверхностной электромагнитной волны (ПЭВ) на плоской поверхности металлического...
Тип: Изобретение
Номер охранного документа: 0002634094
Дата охранного документа: 23.10.2017
17.02.2018
№218.016.2acd

Способ генерации непрерывного широкополосного инфракрасного излучения с регулируемым спектром

Изобретение относится к области оптики и касается способа генерации непрерывного широкополосного инфракрасного излучения с регулируемым спектром. Способ включает в себя нагрев металлического тела, содержащего две смежные плоские грани, генерацию оптическими фононами тела на одной из граней...
Тип: Изобретение
Номер охранного документа: 0002642912
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3174

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области оптических измерений и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство включает в себя источник монохроматического излучения, твердотельный образец с направляющей волну плоской гранью,...
Тип: Изобретение
Номер охранного документа: 0002645008
Дата охранного документа: 15.02.2018
09.06.2018
№218.016.5ace

Триангуляционный метод измерения площади участков поверхности внутренних полостей объектов известной формы

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям обнаружить искомые элементы поверхности контролируемых объектов в труднодоступных внутренних полостях различных технических устройств и сооружений и измерить...
Тип: Изобретение
Номер охранного документа: 0002655479
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aef

Способ и устройство регистрации пространственного распределения оптических характеристик труднодоступных объектов

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления...
Тип: Изобретение
Номер охранного документа: 0002655472
Дата охранного документа: 28.05.2018
02.12.2018
№218.016.a28f

Двухкомпонентный интерферометр общего пути

Устройство предназначено для регистрации пространственного распределения фазовой задержки, вносимой оптически прозрачным микрообъектом, и измерению его характеристик. Устройство состоит из оптически связанных и расположенных последовательно первого оптического компонента, фокусирующего...
Тип: Изобретение
Номер охранного документа: 0002673784
Дата охранного документа: 29.11.2018
08.03.2019
№219.016.d343

Акустооптическая ячейка для реализации обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в жидкости

Использование: для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Сущность изобретения заключается в том, что акустооптическая ячейка (АО-ячейка) содержит герметичный контейнер с...
Тип: Изобретение
Номер охранного документа: 0002681420
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d3a2

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области бесконтактного исследования поверхности металлов и полупроводников и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник p-поляризованного монохроматического излучения,...
Тип: Изобретение
Номер охранного документа: 0002681427
Дата охранного документа: 06.03.2019
Показаны записи 1-10 из 38.
20.02.2013
№216.012.26f5

Активирующий люминесценцию белка гидридный комплекс

Изобретение относится к области биосенсорики и может быть использовано для изучения белков методом люминесценции. Обработкой ультразвуком белка, содержащего ароматические аминокислоты, в физиологическом растворе в присутствии фосфора YHrVO или YЕrYОСl, получают активирующий люминесценцию белка...
Тип: Изобретение
Номер охранного документа: 0002475493
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.3012

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной спектроскопии поверхностей металлов и полупроводников. Спектрометр содержит перестраиваемый по частоте источник p-поляризованного монохроматического излучения, элемент преобразования излучения источника в поверхностные плазмоны (ПП), твердотельный проводящий...
Тип: Изобретение
Номер охранного документа: 0002477841
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.3013

Плазмонный фурье-спектрометр терагерцового диапазона

Изобретение относится к оптическим методам исследования поверхности металлов и полупроводников. Спектрометр содержит источник объемного излучения, светоделитель, расщепляющий излучение на измерительный и реперный пучки, зеркало, твердотельный проводящий образец с двумя сопряженными скругленным...
Тип: Изобретение
Номер охранного документа: 0002477842
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.37c8

Способ локализации неоднородностей металлической поверхности в инфракрасном излучении

Изобретение относится к оптическим методам контроля качества поверхностей металлов и полупроводников. Способ включает воздействие на поверхность зондирующим излучением, для которого металл имеет отрицательную действительную часть диэлектрической проницаемости, преобразование излучения в набор...
Тип: Изобретение
Номер охранного документа: 0002479833
Дата охранного документа: 20.04.2013
27.08.2013
№216.012.651d

Способ определения набега фазы монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к оптическим методам контроля проводящей поверхности в инфракрасном (ИК) излучении и может быть использовано в физико-химических исследованиях динамики роста переходного слоя поверхности, в технологических процессах для контроля толщины и однородности тонкослойных покрытий...
Тип: Изобретение
Номер охранного документа: 0002491522
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6528

Способ определения глубины проникновения поля терагерцовых поверхностных плазмонов в окружающую среду

Изобретение относится к оптическим методам контроля поверхности металлов и полупроводников в терагерцовом диапазоне спектра и может найти применение в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, в...
Тип: Изобретение
Номер охранного документа: 0002491533
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.655e

Способ управления спектром пучка широкополосного терагерцового излучения

Изобретение относится к оптике дальнего инфракрасного (ИК) и терагерцового (ТГц) диапазонов и может найти применение в установках, содержащих широкополосные источники ТГц-излучения, в ТГц плазменной и фурье-спектроскопии проводящей поверхности и тонких слоев на ней, в перестраиваемых фильтрах...
Тип: Изобретение
Номер охранного документа: 0002491587
Дата охранного документа: 27.08.2013
10.04.2014
№216.012.b754

Способ измерения длины распространения инфракрасных поверхностных плазмонов по реальной поверхности

Изобретение относится к области бесконтактного исследования поверхности металлов оптическими методами, а именно к способу измерения длины распространения поверхностных плазмонов, направляемых этой поверхностью. Способ включает измерение интенсивности излучения вдоль трека плазмонов и расчет...
Тип: Изобретение
Номер охранного документа: 0002512659
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.de9d

Способ пассивной локализации ребер прямоугольного металлического параллелепипеда в инфракрасном излучении

Изобретение относится к бесконтактным пассивным методам обнаружения и локализации металлических объектов в инфракрасном (ИК) излучении, а именно к локализации металлических тел в форме прямоугольного параллелепипеда путем регистрации излучаемого ими теплового ИК-излучения, и может найти...
Тип: Изобретение
Номер охранного документа: 0002522775
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.ee8d

Способ сопряжения набора вторичных плазмон-поляритонных каналов связи терагерцового диапазона с основным каналом

Изобретение относится к области средств коммуникации, в которых перенос информации осуществляется поверхностными электромагнитными волнами, точнее поверхностными плазмон-поляритонами (ППП) терагерцового (ТГц) диапазона, направляемыми плоской поверхностью проводящей подложки, и может найти...
Тип: Изобретение
Номер охранного документа: 0002526888
Дата охранного документа: 27.08.2014
+ добавить свой РИД