×
05.06.2023
223.018.7717

Результат интеллектуальной деятельности: ФАЗОВЫЙ ПЕЛЕНГАТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой, а также в головках самонаведения (антирадарах) в качестве датчика углового положения. Достигаемый технический результат - повышение чувствительности (дальности обнаружения) и точности пеленгации. Указанный результат достигается применением усилителя высокой частоты (УВЧ) в фазовых каналах и конформной антенной системы с расположенными по окружности антеннами, а также расположенного в центре антенной системы дополнительного датчика, подключенного к доводочному каналу, информация об угловых координатах с выхода которого используется в ближней зоне пеленгации. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой, а также в головках самонаведения (антирадарах) в качестве датчика углового положения.

Известно построение фазового пеленгатора (ФП) в котором фазовый метод пеленгации реализуется многоканальным супергетеродинным приемником с двумя преобразованиями по частоте, с грубым и точным вычислением пеленгов, но с расположением антенны опорного канала в центре антенной системы (АС). (Фазовый пеленгатор. RU2682165).

Приемник этого ФП обладает повышенной помехозащищенностью и помехоустойчивостью на зеркальной и комбинационных частотах в большом динамическом диапазоне входных сигналов. Кроме этого, благодаря грубому и точному вычислению пеленга и дополнительной коррекции фазовых ошибок возможно дополнительное повышение точности пеленгации. Но пассивный фазовый пеленгатор бессилен в случае, когда отсутствует излучение источника, то есть когда, например, РЛС выключается или переходит в паузный режим работы. И даже наличие пролонгации не гарантирует достаточную точность углового сопровождения источника излучения и высокую вероятность поражения цели (для случая антирадара).

Известно также, что фазовые ошибки, то есть фазовая неидентичность каналов приемника, зависят от изменения поляризации электромагнитного излучения. То есть существуют поляризационные фазовые ошибки, которые могут существенно повлиять на точность углового сопровождения ФП.

Целью изобретения является повышение чувствительности в широком частотном диапазоне и повышение точности в ближней зоне излучения, а также при выключении излучения на пеленгуемом объекте.

Поставленная цель достигается тем, что в фазовый пеленгатор, содержащий N+1 антенну, N+1 смеситель высокой частоты (СмВЧ), усилитель высокой частоты (УВЧ), полоснопропускающий фильтр высокой частоты (ППФВЧ), N+1 предварительный усилитель промежуточной частоты (ПУПЧ), (N+2) полоснопропускающих фильтров первой промежуточной частоты (ППФПЧ1), N смесителей промежуточной частоты (СмПЧ), N полоснопропускающих фильтров второй промежуточной частоты (ППФПЧ2), причем последовательно соединенные первые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют первый фазовый приемный канал, последовательно соединенные вторые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют второй фазовый приемный канал, последовательно соединенные N-e СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют N-ый фазовый приемный канал, последовательно соединенные УВЧ, ППФВЧ, (N+1)-e СмВЧ, ПУПЧ, ППФПЧ1 образуют опорный приемный канал. Фазовый пеленгатор содержит также два перестраиваемых гетеродина (ПГ), блок управления частотой гетеродина (БУЧГ), усилитель промежуточной частоты с логарифмическим видеовыходом (УПЧЛ), два пороговых устройства (ПУ), амплитудный детектор (АД), частотный дискриминатор (ЧД), два блока аналого-цифровых преобразователей (АЦП), вычислитель промежуточной частоты (ПЧ), двухвходовую схему совпадений, электронно-программируемое постоянное запоминающее устройство (ЭППЗУ), формирователь отсчетов АЦП, вычислитель разностей фаз, блок коррекции, вычислитель несущей частоты (ВНЧ). Выходы ППФПЧ2 каждого из N фазовых приемных каналов через N входов и N выходов 1-го блока АЦП, формирователя отсчетов АЦП, вычислителя разности фаз соединены с N входами блока коррекции. Выход первого ПГ соединен с вторыми входами СмВЧ каждого фазового канала, первый выход БУЧГ соединен с входом первого ПГ, второй выход БУЧГ через второй ПГ соединен с вторым входом (N+1)-го СмВЧ опорного канала, третий выход БУЧГ соединен с первым входом ВНЧ и с первым входом ЭППЗУ. Выход вычислителя ПЧ соединен с вторым входом ВНЧ и вторым входом ЭППЗУ. (N+1)-ый выход вычислителя разности фаз соединен с третьим входом ЭППЗУ, выход которого соединен с (N+1)-м входом блока коррекции. Выход ППФПЧ1 опорного канала соединен через УПЧЛ, (N+2)-ой ППФПЧ1, АД, первый ПУ соединен с первым входом схемы совпадений, второй выход УПЧЛ через второе ПУ соединен с вторым входом двухвходовой схемы совпадений. Первый выход УПЧЛ соединен также с входом ЧД, два выхода которого через два входа и два выхода второго блока АЦП соединены с двумя входами вычислителя ПЧ, выход которого соединен с вторым входом вычислителя несущей частоты. В ФП дополнительно введены датчик доводочного канала, вычислитель пеленгов доводочного канала (ВПДК), вычислитель пеленгов фазовых каналов (ВПФК), блок управления коммутатором (БУК) и коммутатор пеленгов, два выхода которою являются выходами устройства. При этом N выходов блока коррекции соединены с соответствующими входами ВПФК, два выхода которого соединены с двумя входами коммутатора и двумя входами блока управления коммутатором, датчик доводочного канала своим выходом соединен с входом вычислителя пеленгов доводочного канала, два выхода которого соединены соответственно с третьим и четвертым входами коммутатора пеленгов и третьим и четвертым входами блока управления коммутатором, пятый вход которого соединен с вторым выходом УПЧЛ, а выход БУК соединен с пятым входом коммутатора.

На рис. 1 приведена структурная схема пеленгатора.

Фазовый пеленгатор содержит (N+1) антенн 11, …, 1N, 10 расположенных в одной плоскости, по окружности, N из которых 11, …, 1N образуют конформную антенную систему, а антенна 10 расположена в месте наименьшего затемнения. Датчик 22 доводочного канала, расположен в центре антенной системы. (N+1) УВЧ 21, …, 2N, 11, N из которых входят в фазовые приемные каналы, (N+1)-ый входит в опорный канал, (N+1) СмВЧ 31, …, 3N, 14, (N+1) ПУПЧ 41, …, 4N, 15, (N+2) ППФПЧ1 51, …, 5N, 16, 29, N СмПЧ 61, …, 6N, N ППФПЧ2 71, …, 7N, два перестраиваемых гетеродина 8,13, БУЧГ 9, ППФВЧ 12, УПЧЛ 27, два ПУ 28, 34, ЧД 30, АД 31, два блока АЦП 17, 32, вычислитель ПЧ 35, двухвходовую схему совпадений 33, ЭППЗУ 21, вычислитель несущей частоты 36, формирователь отсчетов частоты 18, вычислитель разностей фаз 19, блок коррекции 20, ВПФК 23, датчик доводочного канала 22, вычислитель пеленгов доводочного канала 24, блок управления коммутатором 25, коммутатор 26. Выход каждой антенны 11, …, 1N, 10 соединен соответственно с входами УВЧ 21, …, 2N, 11, последовательно соединенные антенна 11, УВЧ 21, СмВЧ 31, ПУПЧ 41, ППФПЧ1 51, СмПЧ 61, ППФПЧ2 71, образуют первый приемный фазовый канал, последовательно соединенные антенна 12, УВЧ 22, СмВЧ 32, ПУПЧ 42, ППФПЧ1 52, СмПЧ 62, ППФПЧ2 72, образуют второй приемный фазовый канал, последовательно соединенные антенна 1N, УВЧ 2N, СмВЧ 3N, ПУПЧ 4N, ППФПЧ1 5N, СмПЧ 6N, ППФПЧ2 7N, образуют N-ый приемный фазовый канал, последовательно соединенные антенна 10, УВЧ 11, ППФВЧ 12, СмВЧ 14, ПУПЧ 15, ППФПЧ1 16 образуют опорный приемный канал. Выход первого ПГ 8, соединен с вторыми входами СмВЧ 31 … 3N каждого приемного фазового канала. Вход первого ПГ 8 соединен с первым выходом БУЧГ 9, второй выход которого соединен через второй ПГ 13 с вторым входом (N+1)-го СмВЧ 14, третий выход БУЧГ 9 соединен с первым входом ЭППЗУ 21 и первым входом вычислителя несущей частоты 36, выход которого соединен с (N+2)-м входом блока коррекции 20, (N+1)-й вход которого соединен с выходом ЭППЗУ 21. Выход (N+1)-го ППФПЧ1 16 через УПЧЛ 27, (N+1)-й ППФПЧ1 29, АД 31, первый ПУ 34 соединен с первым входом схемы совпадений 33. Второй выход УПЧЛ 27 через второе ПУ 28 соединен с вторым входом схемы совпадений 33, выход которой соединен с (N+2)-м входом формирователя отсчетов АЦП 18 и третьим входом второго блока АЦП 32. Первый выход УПЧЛ 27 соединен также с входом ЧД 30, два выхода которого через два входа и два выхода блока АЦП 32 соединены соответственно с двумя входами вычислителя ПЧ 35, выход которого соединен с вторым входом ЭППЗУ 21 и вторым входом вычислителя несущей частоты 36. Выходы ППФПЧ2 71, … 7N каждого фазового канала соединены соответственно через N входов и N выходов первого блока АЦП 17, формирователя отсчетов АЦП 18, вычислителя разностей фаз 19 с N входами блока коррекции 20, (N+1) выход вычислителя разностей фаз 19 соединен с третьим входом ЭППЗУ21. N выходов блока коррекции 20 соединены соответственно с N входами вычислителя пеленгов 23, выход датчика доводочного канала 22 соединен с входом вычислителя пеленгов доводочного канала 24, два выхода которого соединены соответственно с первым и вторым входами коммутатора 26 и первым, вторым входами блока управления коммутатором 25. Два выхода вычислителя пеленгов 23 соединены соответственно с третьим и четвертым входами коммутатора пеленгов 26 и третьим и четвертым входами БУК 25, второй выход УПЧЛ 27 соединен с пятым входом БУК 25, выход которого соединен с пятым входом коммутатора 26, два выхода которого являются выходами устройства.

В основе работы пеленгатора заложен комплексированный метод пеленгации: фазовый на большой дальности, когда источник излучения работает стабильно, с достаточно большой мощностью, а когда излучение источника пеленгации прерывается пеленгация осуществляется доводочным каналом, который в принципе может быть выполнен в различных вариантах, например в виде активного пеленгатора или в виде теплового, реагирующего на тепловое излучения.

Особенностью комплексированного метода является то, что середина плоскости, в которой находятся антенны фазового пеленгатора занята доводочным каналом, чтобы обеспечить хорошие характеристики по точности и дальности доводочного канала. В связи с этим возникают особенности формирования и вычисления пеленгационной характеристики ФП, а также расположение антенн в антенной системе ФП. А именно в ФП применяется конформная антенная система, в которой допускается произвольное, не оптимальное с точки зрения достоверности устранения неоднозначности фазовых вычислений при формировании пеленгационной характеристики (ПХ) ФП. Под конформностью понимается достаточно произвольное расположение антенн по остаточному принципу, без соблюдения классических целочисленных соотношений проекций баз. ПХ ФП строится при настройке, формированием таблицы, а в рабочем режиме методом перебора осуществляется отыскание максимума функции правдоподобия при значениях комплексных чисел, соответствующих определенному направлению, то есть пеленгу цели (ИИ). Комплексность чисел, то есть фазовых и амплитудных величин, формируемых блоком АЦП, предполагается на линейном участке динамического диапазона приемника. Когда приемник входит в ограничение, пеленгация осуществляется только по фазовым отсчетам.

В доводочном канале (ДК) ПХ формируется в отсутствие излучения, то есть в отсутствие сигнала цели, например по тепловому излучению ИИ. Переход на ПХ доводочного канала осуществляется коммутацией с ПХ ФП на ПХ ДК по принципу: угловые координаты по ПХ ФП и по ПХ ДК близки между собой и мощность сигнала, оцениваемая по логарифмическому выходу УПЧЛ, достаточно велика, что свидетельствует о близости ФП к ИИ по дальности или по мощности, оцениваемой по доводочному каналу, если радиоизлучение от ИИ отсутствует. В любом случае на ближнем участке пеленгация осуществляется по доводочному каналу, так как его характеристики по точности и достоверности сопровождения выше, чем собственно ФП.

В основе работы фазового пеленгатора заложен фазовый метод пеленгации, но с особенностями построения ПХ. На этапе настройке ФП осуществляется с определенным дискретом по углам в вертикальной и горизонтальной плоскостях отклонение антенной системы (АС) вместе с ФП (АС неподвижна) по растровому принципу с запоминанием пространственного углового положения и амплитудно-фазового состояния в ЭППЗУ 21, а также вычисленной несущей частоты сигнала. Таким образом, при настройке формируется мощная (огромная) многомерная таблица состояний по амплитуде, фазе, частоте сигнала и по угловому положению ИИ, используемого при настройке. Пеленгатор доводочного канала настраивается по соответствующему его типу источнику излучения (тепловому, визуальному и т.д.) и соответственно строится ПХ ДК.

В качестве приемного устройства в составе пеленгатора используется супергетеродинный приемник с двумя преобразованиями частоты гетеродинами, частоты которых разнесены на величину второй промежуточной частоты. Особенностью такого приемника является высокая помехоустойчивость и помехозащищенность в частотном и динамическом диапазонах входного сигнала и защитой от приема на зеркальной частоте. Двойное преобразование на фиксированную ПЧ позволяет упростить цифровые преобразования в АЦП.

Фазовый пеленгатор работает следующим образом. Электромагнитная волна преобразуется входными антеннами 11, …, 1N, 10 в гармонические когерентные колебания, разности фаз между которыми зависят от направления на ИИ по формуле:

Δϕ=(2πД)/λsinα, где α - расстояние между антеннами, λ - угловое направление на пеленгуемый ИИ.

В случае применения конформной АС целесообразно использовать не только фазу, но и амплитуду сигнала. В этом случае повышается достоверность и точность пеленгации. С выходов антенн 1i фазовых каналов сигналы усиливаются УВЧ 2i, преобразуются по частоте на первую ПЧ в СмВЧ 3i, усиливаются ПУПЧ 4i, фильтруются ППФПЧ1 5i, преобразуются в СмПЧ 6i на вторую ПЧ и фильтруются ППФПЧ2 7i с узкой полосой пропускания. С выхода антенны 10 опорного канала сигнал усиливается УВЧ 11, фильтруется ППФВЧ 12, преобразуется по частоте в СмВЧ 14 на ПЧ сдвинутую относительно ПЧ фазовых каналов на величину ПЧ2, усиливается ПУПЧ 15 и фильтруются ППФПЧ1 16 с соответствующей полосой пропускания. Гетеродины ПГ1 8 и ПГ2 13 управляются БУЧГ 9, кроме этого с третьего выхода БУЧГ 9 код частоты гетеродина поступает на вход ЭППЗУ 21 для фиксации записи амплитуды и фазы векторов по фазовым каналам и вычисления несущей частоты как при настройке ФП, так и в рабочем режиме при обнаружении сигнала.

С выхода ППФПЧ1 16 сигнал ПЧ, совпадающий по времени прихода с сигналами в фазовых каналах, усиливается УПЧЛ 27 и поступает на вход ЧД 30 и на вход ППФПЧ1 29 для фильтрации по ПЧ после ограничения, затем поступает на гетеродинные входы СмПЧ 6i всех фазовых приемных каналов и на вход АД 31, а затем на вход ПУ 34. С детекторного видеовыхода УПЧЛ 27 видеосигнал поступает на вход ПУ 28. При превышении порогов в ПУ 28 и ПУ 34 в схеме совпадений происходит формирование логического сигнала обнаружения и синхронизация в формирователе отсчетов АЦП 17 и в блоке АЦП 32. В ЧД 30 формируются импульсные аналоговые сигналы, пропорциональные и , а в вычислителе ПЧ 35 в цифровом виде формируется, с использованием октантной логики и вычисления , линейная характеристика измерителя ПЧ, однозначная во всей полосе пропускания ППФПЧ1 16.

Формирование ПХ собственно фазового пеленгатора происходит следующим образом.

С выходов ППФПЧ2 71, … 7N каждого фазового приемного канала фильтрованные ПХ сигналы поступают на входы блока АЦП 17, где с определенной тактовой частотой преобразуются в цифровые сигналы, а затем в формирователе отсчетов АЦП 18 запоминаются по импульсу синхронизации, формируемую на выходе схемы совпадений 33, для вычисления разностей фаз Δϕij в блоке вычисления разностей фаз 19 по кольцу, образованному конформной АС. Далее в блоке коррекции 20 осуществляется в разнофазном направлении формирование кодов коррекции и их запоминание в ЭППЗУ 21. Затем в режиме настройки осуществляется в растровом формате в необходимом секторе углов в передней полусфере прохождение с определенным дискретом углового пространства и запоминание в ЭППЗУ 21 задаваемых пеленгов, несущей частоты и состояний векторов, определяющих фазовые пространства.

В рабочем режиме осуществляется дискретная перестройка гетеродинов по частоте, обнаружение сигнала, остановка гетеродинов, формирование на выходах АЦП 18 отсчетов, вычисление Δϕ в вычислителе разностей фаз 19, их коррекция в блоке коррекции 20, затем перебор значений и сравнение с запомненной таблицей (вычисление функции правдоподобия) и формирование пеленгов в соответствующих угловым координатам, соответствующих максимальному значению и достигшему порогового значения но функции правдоподобия. При достоверном формировании функции правдоподобия точность пеленгации будет определяться примерно половиной дискрета растровой развертки по пеленгам, с которым осуществляется формирование таблицы при настройке пеленгатора в вычислитель пеленга 23.

Задача доводочного канала - сформировать пеленги в вертикальной и горизонтальной плоскостях в ближней зоне и с достаточно высокой точностью (по крайней мере, выше, чем точность ФП). В качестве доводочного канала можно использовать лазерный, оптический, с активным каналом пеленгатор, а также с тепловой головкой определения координат. Соответствующий типу пеленгатора датчик располагается в центре АС ФП, что дает возможность получить максимальную точность пеленгации доводочным каналом. С датчика доводочного канала 22 сигнал поступает на вычислитель пеленга доводочного канала 24, который формирует угловые координаты в виде отклонения от центральной оси ФП в вертикальной и горизонтальной плоскостях. Эти координаты юстируются при настройке ФП по ПХ. Угловые координаты вычислителя пеленгов 23 и ВПДК 24 поступают на соответствующие входы БУК 25 и коммутатора 26. БУК 25 формирует команду, по которой на выходы коммутатора 26 проходят угловые координаты вычислителя 23 или ВПДК 24. Для предотвращения перехода на формирование по доводочному каналу на пятый вход БУК приходит сигнал с логарифмического видеовыхода УПЧЛ 27.

Фазовый пеленгатор, содержащий N+1 антенн, N+1 смесителей высокой частоты (СмВЧ), N+1 предварительных усилителей промежуточной частоты (ПУПЧ), N+2 полоснопропускающих фильтров первой промежуточной частоты (ППФПЧ1), усилитель высокой частоты (УВЧ), полоснопропускающий фильтр высокой частоты (ППФВЧ), N смесителей промежуточной частоты (СмПЧ), N полоснопропускающих фильтров второй промежуточной частоты (ППФПЧ2), причем последовательно соединенные первые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют первый фазовый приемный канал, последовательно соединенные вторые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют второй фазовый приемный канал, последовательно соединенные N-e СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют N-й фазовый приемный канал, последовательно соединенные УВЧ, ППФВЧ, (N+1)-e СмВЧ, ПУПЧ, ППФПЧ1 образуют опорный приемный канал, а также содержащий два перестраиваемых гетеродина (ПГ), блок управления частотой гетеродина (БУЧГ), усилитель промежуточной частоты с логарифмическим видеовыходом (УПЧЛ), два пороговых устройства (ПУ), частотный дискриминатор (ЧД), два блока аналого-цифровых преобразователей (АЦП), вычислитель промежуточной частоты (ПЧ), амплитудный детектор (АД), двухвходовую схему совпадений, два блока АЦП, формирователь отсчетов АЦП, вычислитель разностей фаз, вычислитель несущей частоты (ВНЧ), электронно-программируемое постоянное запоминающее устройство (ЭППЗУ), блок коррекции, причем выходы ППФПЧ2 каждого из N фазовых приемных каналов через N входов и N выходов 1-го блока АЦП, формирователя отсчетов АЦП, вычислителя разности фаз соединены с N входами блока коррекции, первый выход БУЧГ соединен с входом первого ПГ, второй выход БУЧГ через второй ПГ соединен с вторым входом (N+1)-го СмВЧ опорного канала, третий выход БУЧГ соединен с первым входом ВНЧ и первым входом ЭППЗУ, первый выход УПЧЛ через первый ПУ соединен с первым входом схемы совпадений, второй выход УПЧЛ через (N+2)-й ППФПЧ1, АД и второе ПУ соединен с вторым входом схемы совпадений, выход (N+2)-го ППФПЧ1 дополнительно соединен с вторыми входами СмПЧ каждого из N фазовых приемных каналов, второй выход УПЧЛ соединен также с входом ЧД, два выхода которого через два входа и два выхода второго блока АЦП соединены с двумя входами вычислителя ПЧ, выход которого соединен с вторым входом ЭППЗУ и вторым входом ВНЧ, выход двухвходовой схемы совпадений соединен с (N+1)-м входом формирователя отсчетов АЦП и третьим входом второго блока АЦП, (N-1)-й выход вычислителя разности фаз соединен с третьим входом ЭППЗУ, выход которого соединен с (N+1)-м входом блока коррекции, отличающийся тем, что дополнительно введены вычислитель пеленгов (ВП), блок управления коммутатором (БУК), датчик доводочного канала, расположенный в центре антенной системы ФП, вычислитель пеленгов доводочного канала (ВПДК), коммутатор, два выхода которого являются выходами устройства, при этом N выходов блока коррекции соединены с N входами вычислителя пеленгов, два выхода которого соединены соответственно с двумя входами БУК и двумя входами коммутатора, датчик доводочного канала соединен с входом ВПДК, два выхода которого соединены соответственно с третьим и четвертым входами коммутатора и с третьим и четвертым входами БУК, выход которого соединен с пятым входом коммутатора, а пятый вход БУК соединен с первым выходом УПЧЛ.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 251.
27.02.2013
№216.012.2c3d

Способ оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел

Изобретение относится к способу оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел, включающий проведение параллельных отборов проб воздуха гермокабины путем его прокачки через...
Тип: Изобретение
Номер охранного документа: 0002476852
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2d92

Промежуточный ковш для разливки стали с камерами для плазменного подогрева жидкого металла

Изобретение относится к металлургии, в частности к непрерывной разливке металла. Ковш содержит две камеры для плазменного подогрева металла, расположенные между приемным и разливочными отсеками, разделенными перегородками с переливными каналами. Переливные каналы в перегородке камеры подогрева...
Тип: Изобретение
Номер охранного документа: 0002477197
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e1c

Сталь

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления массивных изделий, в частности валов роторов турбогенераторов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,20-0,23, кремний 0,01-0,07, марганец 0,3-0,4, хром 1,45-1,60, никель...
Тип: Изобретение
Номер охранного документа: 0002477335
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ed6

Система управления летным экспериментом

Изобретение относится к области средств информационного обеспечения испытаний и исследований летательных аппаратов (ЛА) и их систем и может быть использовано для контроля и управления ходом испытательного (исследовательского) полета воздушных судов (ВС). Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002477521
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f4e

Устройство для отделения частиц от жидкости

Изобретение относится к отделению твердых частиц от жидкости, конкретно, к устройствам, в которых используются турбулентные эффекты, возникающие при протекании жидкости с взвешенными частицами через трубу, и может быть использовано в области гидромеханизации при подводной разработке грунта....
Тип: Изобретение
Номер охранного документа: 0002477645
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.3710

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. Способ включает переплав расходуемого электрода на переменном токе с наложением на шлаковую и металлическую ванны переменного электромагнитного поля. При...
Тип: Изобретение
Номер охранного документа: 0002479649
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3b08

Устройство для сжигания топлива

Изобретение относится к области энергетики и может быть использовано для сжигания газообразного топлива, а также в химической, нефтехимической и других отраслях промышленности. Устройство для сжигания топлива включает расположенные в цилиндрическом корпусе центральный и периферийный воздушные...
Тип: Изобретение
Номер охранного документа: 0002480673
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3de9

Высокопрочная сталь

Изобретение относится к металлургии, а именно к составам сталей, используемых в энергетическом машиностроении. Сталь содержит, мас.%: углерод 0,07-0,18, марганец 0,40-1,50, кремний 0,17-0,80, молибден 0,10-0,14, ванадий 0,15-0,45, хром 0,50-2,00, алюминий 0,005-0,012, азот 0,002-0,010, титан...
Тип: Изобретение
Номер охранного документа: 0002481416
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.3fc0

Способ селективной каталитической очистки выхлопных и топочных газов от оксидов азота

Изобретение относится к области селективной каталитической очистки выхлопных и топочных газов от оксидов азота. Способ селективной каталитической очистки выхлопных и топочных газов от оксидов азота включает каталитическое удаление оксидов азота из очищаемого газа при использовании аммиака в...
Тип: Изобретение
Номер охранного документа: 0002481890
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.403b

Самолет местных воздушных линий

Изобретение относится к авиационной технике и может быть использовано при разработке самолетов местных воздушных линий пассажировместимостью 18-24 места. Самолет содержит фюзеляж, крыло, хвостовое оперение, силовую установку из двух двигателей и воздушный винт. Двигатели расположены внутри...
Тип: Изобретение
Номер охранного документа: 0002482013
Дата охранного документа: 20.05.2013
Показаны записи 11-20 из 36.
20.10.2015
№216.013.877c

Способ диагностики развития стенозирования стентов

Изобретение относится к области медицины, а именно к способу диагностики возникновения рестеноза в ранее стентированном сегменте. Сущность способа состоит в том, что исследуют кровь пациентов, определяют уровень циркулирующих СD45+ и при показателе, равном 0,91% и более от общего числа...
Тип: Изобретение
Номер охранного документа: 0002566287
Дата охранного документа: 20.10.2015
20.05.2016
№216.015.4166

Способ моделирования травматического остеомиелита

Изобретение относится к экспериментальной медицине и может быть использовано для моделирования травматического остеомиелита трубчатых костей. Способ включает предварительную сенсибилизацию крыс путем трехкратного внутрибрюшинного введения ослабленной нагреванием при 60°С в течение 30 минут...
Тип: Изобретение
Номер охранного документа: 0002584402
Дата охранного документа: 20.05.2016
10.05.2018
№218.016.47db

Антенный обтекатель и способ его изготовления

Изобретение относится к области ракетной техники, в частности к головным радиопрозрачным обтекателям пеленгационных сверхширокополосных антенн, работающих в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот, и может быть использовано при проектировании и изготовлении радиопрозрачных...
Тип: Изобретение
Номер охранного документа: 0002650725
Дата охранного документа: 17.04.2018
14.07.2018
№218.016.7159

Совмещенная пассивно-активная антенная система

Изобретение относится к антенной технике. Пассивная антенная система состоит из сверхширокополосных спиральных антенн, конструктивно представляющих собой комбинацию плоской и полусферической двузаходных спиралей на диэлектрическом корпусе. Антенны размещены на металлическом неподвижном конусном...
Тип: Изобретение
Номер охранного документа: 0002661302
Дата охранного документа: 13.07.2018
30.08.2018
№218.016.817c

Способ измерения частоты сигналов

Изобретение может быть использовано в системах наблюдения за радиотехнической обстановкой и для измерения несущей частоты сигналов. В способе измерения частоты радиосигнал усиливают и ограничивают по амплитуде, далее разделяют сигнал на два синфазных сигнала, при этом один из этих сигналов...
Тип: Изобретение
Номер охранного документа: 0002665363
Дата охранного документа: 29.08.2018
03.03.2019
№219.016.d25e

Схема подключения пиросредств

Изобретение относится к системам имитации (инициирования) пиросредств. Прибор для подрыва пиросредств содержит источник энергии, развязывающие диоды, электровзрывные сети и ключи, половина из которых первыми выводами соединена с минусовой полярностью электровзрывных сетей, а вторыми выводами...
Тип: Изобретение
Номер охранного документа: 0002681029
Дата охранного документа: 01.03.2019
17.03.2019
№219.016.e2c7

Фазовый пеленгатор

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как самостоятельное устройство. Достигаемый технический результат - повышение точности пеленгации в частотном диапазоне и в заданных пространственных...
Тип: Изобретение
Номер охранного документа: 0002682165
Дата охранного документа: 15.03.2019
10.04.2019
№219.017.04b1

Устройство компенсации нестабильности несущей частоты фазоманипулированных сигналов

Изобретение относится к радиотехнике и предназначено для использования при когерентной демодуляции сигналов с многопозиционной фазовой манипуляцией. Устройство содержит два перемножителя, первые входы которых объединены и являются входом устройства, фазовращатель, синтезатор частоты, опорный...
Тип: Изобретение
Номер охранного документа: 0002336650
Дата охранного документа: 20.10.2008
10.04.2019
№219.017.0577

Фазовый пеленгатор

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Заявленный фазовый пеленгатор содержит две антенны, два усилителя высокой частоты, фазовый детектор, логарифмические...
Тип: Изобретение
Номер охранного документа: 0002362179
Дата охранного документа: 20.07.2009
21.04.2019
№219.017.361f

Способ подготовки аутологичных моноцитов человека для терапии ожоговых ран

Изобретение относится к области биотехнологии, в частности к подготовке аутологичных моноцитов человека для терапии ожоговых ран. Способ включает выделение моноцитов венозной крови методами градиентного центрифугирования (на градиенте фиколла и двойном градиенте перколла). Затем осуществляют...
Тип: Изобретение
Номер охранного документа: 0002685472
Дата охранного документа: 18.04.2019
+ добавить свой РИД