×
01.06.2023
223.018.74e2

Результат интеллектуальной деятельности: Способ промывки скважины от глинисто-песчаной или проппантовой пробки

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности, а именно промывке скважины от уплотненной глинисто-песчаной или проппантовой пробки. Способ включает спуск в скважину на колонне насосно-компрессорных труб устройства выше пробки, нагнетание промывочной жидкости с подъемом жидкости через межтрубное пространство скважины, сброс с устья скважины в колонну насосно-компрессорных труб шара, осуществление гидродинамического воздействия на пробку после посадки шара в посадочное седло закачкой жидкости по колонне насосно-компрессорных труб, переключение направления промывки и подъем разрыхленных твердых отложений пробки по колонне насосно-компрессорных труб закачкой жидкости по межтрубному пространству под давлением. Одновременно с гидродинамическим воздействием на пробку осуществляют кавитационное воздействие, которое генерируют устройством, установленным на колонне насосно-компрессорных труб, выполненным в виде полого цилиндрического корпуса с косым срезом, имеющего одно коническое посадочное седло для посадки cбрасываемого шара. В посадочном седле радиально закреплен один ярус насадков, насадки направлены вниз под углом 20-3° к оси полого цилиндрического корпуса. Корпус и посадочное седло образуют центральный промывочный канал. Насадки имеют форму внутреннего проточного канала, обеспечивающую генерацию кавитационного истечения. Обеспечивается эффективное разрушение пробки за счет непрерывного воздействия интенсивными упругими колебаниями с разрушением частиц пробки и облегчением их выноса на поверхность. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно промывке скважины от уплотненной глинисто-песчаной или проппантовой пробки. 

Известен способ промывки забоя скважины (патент RU № 2717167, опубл. 18.03.2020 в Бюл. № 8), включающий спуск на забой скважины колонны насосно-компрессорных труб (НКТ) с косым срезом, оснащенным коническим посадочным седлом для сменных насадков на 2-2,5 метра выше текущего забоя, прокачку промывочной жидкости и ее отбор через межтрубное пространство скважины с постепенным спуском колонны насосно-компрессорных труб до упора косого среза в пробку и изменения веса подвески колонны. Затем прокачку останавливают и осуществляют сброс насадка во внутреннюю часть колонны насосно-компрессорных труб, подают промывочную жидкость до посадки насадка в коническое седло для сменных насадков, которая сопровождается резким скачкообразным увеличением давления, затем осуществляют прокачку промывочной жидкости по колонне насосно-компрессорных труб через насадок и отбор промывочной жидкости с механическими фракциями через межтрубное пространство до достижения проектной глубины, после чего прокачку останавливают и переключают скважину на обратную промывку. При этом извлекают насадок вместе с промывочной жидкостью и механическими примесями на дневную поверхность. Насадок выполнен гидромониторной или кавитационной конфигурации с диаметром сечения 8-16 мм. Сброс насадка во внутреннюю часть колонны может быть осуществлен в двухкратном или трехкратном повторении, при этом в каждом последующем повторении используют насадок меньшего внутреннего диаметра, чем предыдущий. Увеличивается степень разрушения уплотненных глинисто-песчанных и проппантовых пробок и сокращается время их разрушения.

Недостатками данного способа являются недостаточная эффективность разрушения пробки по периферии, а также невозможность очистки перфорационных каналов от частиц пробки (кольматанта).

Наиболее близким по технической сущности является способ очистки скважины от уплотненной песчаной пробки (патент RU № 2756220, опубл. 28.09.2021 в Бюл. № 28), включающий спуск в скважину колонны насосно-компрессорных труб – НКТ с пером на конце до упора пера в забой, причём на нижнем конце пера установлен рыхлитель, а внутри пера установлена перегородка, в которой эксцентрично над рыхлителем выполнены отверстия меньшего диаметра и отверстие большего диаметра, при этом над перегородкой напротив отверстия большого диаметра установлен обратный клапан, пропускающий снизу вверх, закачку жидкости по колонне НКТ через отверстия малого диаметра с подъемом жидкости через межтрубное пространство скважины, переключение направления промывки и подъем разрыхленного размытого шлама по колонне НКТ до восстановления веса подвески колонны НКТ закачкой жидкости по межтрубному пространству под давлением, не превышающем допустимое давление на обсадную колонну скважины, отличающийся тем, что колонну НКТ, оснащённую снизу пером, выполненным в виде цилиндрической насадки с пикой на конце, спускают в скважину до интервала уплотнённой песчаной пробки, причём пика выполнена плоской в виде ромба с поперечной диагональю длиной, равной 0,9 внутреннего диаметра скважины, затем производят механическое воздействие на уплотнённую песчаную пробку до рыхления верхнего слоя уплотнённой песчаной пробки в 3-4 цикла, причём в каждом цикле частично разгружают вес колонны НКТ на уплотнённую песчаную пробку, приподнимают колонну НКТ до восстановления веса подвески колонны НКТ, а затем поворачивают колонну НКТ с устья скважины, после механического воздействия на уплотнённую песчаную пробку сбрасывают с устья скважины в колонну НКТ бросовый элемент, после посадки бросового элемента на посадочное седло большого отверстия в перегородке производят гидромониторное воздействие на уплотнённую песчаную пробку закачкой жидкости по колонне НКТ через отверстия малого диаметра, расположенные на разных расстояниях от центра цилиндрической насадки до размывания уплотнённой песчаной пробки, при этом в процессе гидромониторного воздействия одновременно спускают колонну НКТ вниз с возможностью частичной разгрузки веса колонны НКТ на размываемую пробку до достижения текущего забоя скважины с подъёмом жидкости по межтрубному пространству в желобную ёмкость, после чего переключают направление промывки и прокачкой промывочной жидкости по межтрубному пространству под давлением, не превышающем допустимое давление на обсадную колонну скважины, вымывают размытый песок по колонне труб в желобную ёмкость.

Недостатками данного способа являются невозможность очистки перфорационных каналов от частиц пробки (кольматанта) и осуществление ее разрушения только за счет гидромониторного эффекта, т.е. не используется энергия многократно повторяющихся упругих колебаний для обеспечения интенсивного разрушения частиц пробки и облегчения выноса (подъема) их на устье скважины в желобную емкость.

Задачей заявляемого изобретения является интенсификация разрушения глинисто-песчаных или проппантовых пробок в скважинах за счет синергетического эффекта гидродинамического и кавитационных воздействий на твердые отложения.

Техническим результатом предлагаемого изобретения является создание способа промывки скважины от глинисто-песчаной или проппантовой пробки, позволяющего эффективно разрушать пробку по периферии забоя скважины, а также повысить эффективность очистки призабойной зоны пласта за счет непрерывного воздействия интенсивными упругими колебаниями, что обеспечивает интенсивное разрушение частиц пробки и облегчения выноса (подъема) их на устье скважины в желобную емкость.

Технический результат достигается тем, что реализуют способ промывки скважины от глинисто-песчаной или проппантовой пробки, включающий спуск в скважину на колонне насосно-компрессорных труб устройства выше пробки, нагнетание в него промывочной жидкости с подъемом жидкости через межтрубное пространство скважины, сброс с устья скважины в колонну насосно-компрессорных труб шара, осуществление гидродинамического воздействия на пробку после посадки шара в посадочное седло закачкой жидкости по колонне насосно-компрессорных труб, переключение направления промывки и подъем разрыхленных твердых отложений пробки по колонне насосно-компрессорных труб закачкой жидкости по межтрубному пространству под давлением, отличающийся тем, что одновременно с гидродинамическим воздействием на пробку осуществляют кавитационное воздействие с целью интенсивного разрушения пробки, при этом кавитационное истечение генерируют устройством, установленным на колонне насосно-компрессорных труб, выполненным в виде полого цилиндрического корпуса с косым срезом, имеющего одно коническое посадочное седло для посадки вбрасываемого шара, в посадочном седле радиально закреплен один ярус насадков, причем насадки направлены вниз под углом 20-30° к оси полого цилиндрического корпуса устройства, при этом полый цилиндрический корпус и посадочное седло образуют центральный промывочный канал, а насадки имеют имеет форму внутреннего проточного канала, обеспечивающую генерацию кавитационного истечения. При осуществлении способа в колонну насосно-компрессорных труб бросают шар, включают подачу жидкости в колонну насосно-компрессорных труб с малым давлением, следят за величиной его изменения, резкое повышение давления свидетельствует о посадке шара в коническое посадочное седло, при этом центральный промывочный канал подачи жидкости перекрывается, вся промывочная жидкость направляется в насадки, затем повышают давление промывочной жидкости для генерирования кавитационного воздействия во внутренних проточных каналах насадков, осуществляют промывку пробки, после достижения проектной глубины скважины до достижения полного извлечения частиц разрушенной пробки останавливают нагнетание промывочной жидкости, переключают направление промывки и осуществляют подъем разрыхленных твердых отложений пробки по колонне насосно-компрессорных труб закачкой жидкости по межтрубному пространству под давлением, при этом шар снимается с конического посадочного седла и извлекается вместе с промывочной жидкостью и разрыхленными твердыми отложениями пробки на дневную поверхность.

На фиг.1 представлена схема осуществления способа промывки скважины от глинисто-песчаной или проппантовой пробки. В скважину 1 на колонне насосно-компрессорных труб (НКТ) 2 спускают устройство в форме полого цилиндрического корпуса 3 с косым срезом в нижней его части, имеющего одно коническое посадочное седло 4 с закрепленным в нем одним ярусом (рядом) насадков 5 с внутренними каналами. Косой срез служит для пикования пробки, при разгрузке НКТ на пробку. Насадки 5 закреплены в корпусе 3 радиально и направлены вниз под углом 20-30° к оси полого цилиндрического корпуса 3 устройства. В ярусе (ряде) может устанавливаться 3-6 насадков с внутренним диаметром 2,5-5 мм в зависимости от типоразмеров используемых агрегатов и интервала расположения пробки 6. Коническое посадочное седло 4 предназначено для фиксации вбрасываемого при осуществлении изобретения шара 7 в центральный промывочный канал 8, образованный корпусом 3 и посадочным седлом 4 с закрепленными в нем насадками 5. Диаметр шара 7 зависит от диаметра используемых насосно-компрессорных труб 2. Устройство спускают на расстоянии 2-2,5 м выше пробки 6, которая полностью перекрывает интервал перфорации 9 в скважине 1. Каждый насадок 5 имеет конфигурацию внутреннего проточного канала, обеспечивающую генерацию кавитационного истечения, например, цилиндрическую форму с выполненным внутри проточным каналом в форме одного цилиндрического участка 10, соединенного с одним конически расходящимся участком 11, или более сложные формы, состоящие из 3-5 участков. Такие насадки для генерирования кавитационных эффектов известны из уровня техники. Насадки 5 изготавливают сменными с различными диаметрами критических сечений в диапазоне 2,5-5 мм для работы на различных насосных агрегатах и для скважин с различной глубиной.

Предлагаемый способ осуществляют следующим образом.

Описанное выше устройство соединяют с помощью резьбы или переходника с колонной НКТ 2 и спускают в скважину 1 на глубину 2-2,5 м выше пробки 6, которую необходимо разрушить. Предусмотрены два этапа промывки скважины:

1) свободная промывка (при рыхлом забое)

2) усиленная промывка (при наличии твердой проппантовой или глинисто-песчаной пробки).

На первом этапе включают поверхностные насосные агрегаты (при необходимости вместе с компрессорами) и обеспечивают промывку скважины 1. Жидкость при этом движется внутри колонны НКТ 2 и истекает в скважину 1 через центральный промывочный канал 8, а также через насадки 5, причем через насадки 5 протекает меньшая часть жидкости. Насосы работают при малых давлениях (3,0-5,0 МПа).

Если пробка 6 сцементированная (проппантовая или глинисто-песчанная), не разрушается струей промывочной жидкости, что контролируется снижением веса НКТ 2 при спуске, т.е. разгрузкой на пробку 6 (колонну НКТ 2 с устройством опускают (разгружают) на пробку 6, и при этом вес НКТ снижается, значит пробка 6 плотно стоит в скважине 1), то промывку прекращают и реализуют второй этап, обеспечивающий гидродинамическое и кавитационное воздействие на пробку. При этом с устья скважины в колонну НКТ 2 бросают шар 7 (например, диаметром 42 мм при использовании НКТ 73 мм), включают подачу жидкости в колонну НКТ 2 с малым давлением (3,0-5,0 МПа), следят за величиной его изменения. Резкое повышение давления свидетельствует о посадке шара 7 в коническое посадочное седло 4. При этом центральный промывочный канал 8 подачи жидкости перекрывается, вся промывочная жидкость направляется в насадки 5. После чего повышают давление насосных агрегатов до 6,0-10,0 МПа, осуществляют промывку пробки 6.

Увеличение степени гидродинамического воздействия и сокращение времени разрушения твердых отложений достигается за счет увеличения силы давления струи жидкости в насадках 5, воздействующей на песчаную или пропантовую пробку. Давление промывочной жидкости возрастает, а расход остается неизменным или даже снижается (в сравнении с первым этапом до сброса шара). Таким образом повышается скорость истечения и давление струи жидкости при сохранении прежних затрат энергии и при использовании штатного оборудования. При этом во внутренних проточных каналах насадков 5 генерируется кавитация, сопровождающаяся колебаниями давления и вибрационными процессами, интенсифицирующими разрушение пробки. Ориентирование насадков 5 радиально под углом 20-30° к оси цилиндрического корпуса 3 обеспечивает гарантированную очистку всего сечения ствола скважины от уплотненной глинисто-песчаной или проппантовой пробки 6, а также очистку перфорационных каналов 9 от кольматирующих частиц пробки. Истекающий поток из насадков 5 благодаря их радиальному расположению воздействует на отложения на стенках скважины 1 в области перфорационных каналов 9, а колебательные и кавитационные явления, генерируемые струей жидкости из насадков 5, разрушают отложения глинистых частиц. В процессе возбуждения кавитации жидкостная среда под напором поступает в насадок 5, где, пройдя цилиндрический участок 10, поток жидкости ускоряется и попадает в конически расходящийся участок 11 с углом раскрытия канала 13-14o. При этом достигается очень резкое увеличение скорости потока жидкостной среды с возникновением локального разрыва сплошности потока с образованием полостей и каверн, заполненных паром и газом. Как результат поток выносит полости и каверны за пределы насадков 5, где они схлопываются, создавая гидравлические удары и как следствие вибрацию в глинисто-песчаной или проппантовой пробке. Поскольку описанные выше процессы происходят многократно, мгновенно и, как правило, через равные периоды времени, то сопровождающие их звуковые волны, гидравлические удары приводят к гармоничным явлениям, резонансу с большой разрушающей силой, воздействующим на глинисто-песчанную или проппантовую пробку: пробка разрушается не только гидравлическим размывом, но и глубоким многократным кавитационным воздействием, что способствует более интенсивному разрушению ее сцементированной структуры в скважине. Для повышения скорости и качества промывки скважины от пробки можно осуществлять вращение колонны НКТ 2.

При достижении проектной глубины скважины, т.е. при полном разрушении пробки и приведении ее частиц в псевдоожиженное состояние, не дожидаясь полного извлечения частиц разрушенной пробки, кольматанта, породы пласта из скважины, останавливают промывку, переключают устье скважины на обратную промывку с давлением примерно 2-3 МПа, осуществляют подачу жидкости в межтрубное пространство 12, а отбор – по колонне НКТ 2. При этом шар 7 снимается с конического посадочного седла 4 и извлекается вместе с промывочной жидкостью и частицами разрушенной пробки, кольматанта, породы пласта на дневную поверхность. После этого скорость восходящего потока жидкости внутри колонны НКТ 2 резко возрастает по сравнению со скоростью в межтрубном пространстве, и частицы пробки извлекаются на устье скважины в желобную емкость значительно быстрее.

Для облегчения извлечения шара 7 обратной промывкой его изготавливают из материалов с низкой плотностью, например, из сплава Д16Т.

Натурные скважинные опытно-промышленные испытания подтвердили высокую эффективность, работоспособность и надежность предлагаемого способа. Реализация данного способа была осуществлена на добывающих скважинах газонефтяных месторождений Дыш и Ключевое, расположенных на территории Краснодарского края, при осуществлении капитального ремонта скважин сервисной организацией.

Результаты этих испытаний представлены в таблице 1.

Таблица 1 - Результаты практической апробации способа промывки скважины от глинисто-песчаной или проппантовой пробки на месторождениях Дыш, Ключевое.

Этап, реализуемый при промывке Данные по скважине Характеристики поверхностного насосного агрегат ЦА-320 при промывки скважины Время на разрушение пробки, мин
№ скважины/ название месторождения Мощность пробки, м/тип пробки Обрабатываемый интервал, м
Давление Р, МПа Подача Q, л/с
1 этап № 526
Дыш
11/
рыхлая глисто-песчаная
2018-2007 3,0-4,0 6 2
2 этап № 153
Дыш
20/
глинисто-песчаная
2037,0-2017,0 4,0-4,5 2 7
2 этап №524
Дыш
22/
глинисто-песчаная
2043,7-2020,9 5,2-6,0 5 6
2 этап №456 Дыш 32
глинисто-песчаная
1980-1948 4,5-5,5 6 4,5
2 этап №869 Ключевое 5
Проппантовая
650-645 6,0 5 7

Таким образом, предлагаемый способ позволяет интенсифицировать разрушение глинисто-песчаной или проппантовой пробки в скважине за счет синергетического воздействия гидродинамических и кавитационных эффектов при сохранении неизменным расхода промывочной жидкости относительно промывки рыхлой глинисто-песчаной пробки, незначительном изменении давления, сохранении прежних затрат энергии и при использовании штатного оборудования.

Источник поступления информации: Роспатент

Показаны записи 321-330 из 471.
29.05.2019
№219.017.6223

Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока

Изобретение относится к электротехнике, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002689211
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6238

Способ изготовления аксиальных магнитопроводов

Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и может быть использовано при изготовлении магнитопроводов пакетов статора и ротора для аксиальных электрических машин, например пакетов статора и ротора аксиальных синхронных и асинхронных...
Тип: Изобретение
Номер охранного документа: 0002689249
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6246

Пищевая композиция для производства бисквитного полуфабриката профилактического назначения

Изобретение относится к пищевой промышленности. Предложена пищевая композиция для производства бисквитного полуфабриката профилактического назначения, включающая муку, крахмал, меланж и вкусовой наполнитель, при этом в качестве крахмала содержит рисовый крахмал Remyline, в качестве муки...
Тип: Изобретение
Номер охранного документа: 0002689358
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6288

Двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователе механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной...
Тип: Изобретение
Номер охранного документа: 0002688211
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62ad

Двухвходовый двухроторный ветро-солнечный генератор

Изобретение относится к области электротехники и может быть использовано в преобразователе механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной...
Тип: Изобретение
Номер охранного документа: 0002688213
Дата охранного документа: 21.05.2019
31.05.2019
№219.017.7168

Способ переработки зерна риса

Изобретение относится к пищевой промышленности и может быть использовано при переработке зерна риса. Способ переработки зерна риса включает очистку зерновой массы от посторонних примесей, шелушение зерна риса, разделение продуктов шелушения на шелушеный рис, нешелушеный рис и лузгу,...
Тип: Изобретение
Номер охранного документа: 0002689724
Дата охранного документа: 28.05.2019
08.06.2019
№219.017.75aa

Способ и установка для кавитационно-реагентной очистки внутреннего пространства пылеуловителя мультициклонного типа

Группа изобретений относится к способу и установке для очистки внутреннего пространства различного технологического оборудования, применяемого в газовой промышленности, в частности к способу очистки внутреннего пространства пылеуловителя мультициклонного типа от отложений, представляющих собой...
Тип: Изобретение
Номер охранного документа: 0002690930
Дата охранного документа: 06.06.2019
15.06.2019
№219.017.8338

Установка для получения детали из металлического порошкового материала

Изобретение относится к оборудованию для получения детали методом селективного лазерного спекания с применением поверхностно-пластического деформирования и ультразвуковой обработки. Установка для получения детали из металлического порошкового материала содержит камеру, в верхней части которой...
Тип: Изобретение
Номер охранного документа: 0002691468
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.8382

Способ изготовления детали из металлического порошкового материала

Изобретение относится к способу изготовления деталей из металлического порошкового материала с применением технологий 3D-печати. Способ изготовления детали из металлического порошкового материала послойным аддитивным наращиванием детали включает получение первого слоя путем нанесения...
Тип: Изобретение
Номер охранного документа: 0002691447
Дата охранного документа: 13.06.2019
15.06.2019
№219.017.838d

Установка для получения детали из металлического порошкового материала

Изобретение относится к оборудованию для получения детали методом селективного лазерного спекания с применением поверхностно-пластического деформирования и точечной контактной сварки. Установка для получения детали из металлического порошкового материала содержит камеру, в верхней части которой...
Тип: Изобретение
Номер охранного документа: 0002691469
Дата охранного документа: 14.06.2019
Показаны записи 11-11 из 11.
21.03.2020
№220.018.0eac

Способ промывки забоя скважины

Изобретение относится к нефтяной промышленности и может применяться при промывке и очистке буровых скважин. Способ включает спуск на забой скважины колонны насосно-компрессорных труб с косым срезом, оснащенным коническим посадочным седлом для сменных насадков на 2-2,5 метра выше текущего забоя,...
Тип: Изобретение
Номер охранного документа: 0002717167
Дата охранного документа: 18.03.2020
+ добавить свой РИД