×
30.05.2023
223.018.73c5

Результат интеллектуальной деятельности: Устройство обнаружения биопатогенов в воздухе

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и касается устройства для обнаружения биопатогенов в воздухе. Устройство содержит узел для подготовки воздуха, концентратор, оптическую камеру и источник излучения, направленный на воздушный поток внутри оптической камеры для возбуждения частиц в воздушном потоке для создания излучения флуоресценции и рассеянного частицами излучения. На выходе оптической камеры расположен делитель, на первом выходе которого расположено первое измерительное средство для измерения излучения флуоресценции. На втором выходе делителя расположено второе измерительное средство для измерения излучения, рассеянного частицами. В устройство между концентратором и оптической камерой введен термостабилизирующий элемент воздушного потока. До термостабилизирующего элемента введен узел охлаждения источника излучения, использующий поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения. Технический результат заключается в повышении точности определения наличия биопатогенов в воздухе и увеличении диапазона эксплуатационных температур. 1 ил.

Изобретение относится к области определения наличия в воздухе биопатогенов, а именно к устройствам обнаружения биопатогенов в воздухе для защиты человека или животных от вредного воздействия бактерий, вирусов.

Из уровня техники известен пластиковый детектор частиц для обнаружения биологического аэрозоля и других флуоресцирующих веществ по патенту № US 9500591 B1 МПК G01N 21/64, G01N 21/47, G01N 15/14, B29D 11/00, В29K 77/00, В29K 507/04, В29K 509/08 опубл. 22.11.2016 г.

Также известно устройство определения биологического загрязнения воздуха, описанное в патенте RU 2337349, МПК G01N 21/64, опубл. 27.10.2008, состоящее из конструкции подготовки потока пробы воздуха, источника ультрафиолетового излучения, приемника излучения частиц. Конструкция подготовки потока пробы воздуха выполнена в виде виртуального импактора с возможностью формирования на выходе коаксиальных мажорного и охватывающего его минорного потоков воздуха, при этом мажорный вход импактора представляет собой заборный элемент анализируемой пробы воздуха. Приемник излучения частиц выполнен в виде спектрофлуориметра, оснащенного оптическим элементом спектрального разложения флуоресценции аэрозольных частиц в сфокусированном объеме пробы и фотоприемником. Но в данном устройстве использование виртуального импактора, который не реализует концентрирование аэрозоля, содержащегося в потоке воздуха, уменьшает объем воздуха, поступающий в устройство для анализа, в единицу времени. Кроме того, отсутствует возможность эксплуатации прибора в широком диапазоне температур окружающего воздуха включая отрицательные.

Наиболее близким к заявляемому является устройство, описанное в патенте RU №2559521С2 МПК G01N 15/14, G01N 21/64, G01N 21/53, опубл. 10.08.2015 г., под названием «Способ и устройство для обнаружения биологического материала». Способ и устройства в соответствии с изобретением, в частности, подходят для обнаружения/идентификации биологических частиц. В состав устройства входит: измерительный блок, источник света, светоделительное зеркало, первое измерительное средство и второе измерительное средство. Воздушный поток сначала подают в концентратор с виртуальным импактором. В концентраторе имеет место разделение потоков, которое снижает скорость основного воздушного потока в десять раз от исходного. Сконцентрированный поток с помощью вводного сопла направляют в оптическую камеру, в которой происходит возбуждение частиц ультрафиолетовым излучением и сбор излучения рассеяния и люминесценции. Для предотвращения загрязнения оптической камеры используют систему газового затвора. Но у данного устройства отсутствует возможность эксплуатации прибора в широком диапазоне температур окружающего воздуха включая отрицательные.

Задачей изобретения является повышение точности определения наличия биопатогенов в воздухе, увеличение диапазона эксплуатационных температур и упрощение конструкции устройства.

Технический результат настоящего изобретения заключается в повышении точности определения наличия биопатогенов в воздухе, увеличении диапазона эксплуатационных температур и упрощении конструкции устройства.

Это достигается тем, что в устройстве для обнаружения биопатогенов в воздухе, содержащем частицы биологического и/или инертного биологического материала, которое выполнено с возможностью подачи воздушного потока в узел для подготовки воздуха через концентратор внутрь оптической камеры, и выведения воздушного потока из оптической камеры, вне узла подготовки воздуха расположен источник излучения, направленный на воздушный поток внутри оптической камеры и испускающий пучок излучения для возбуждения частиц в воздушном потоке для создания излучения флуоресценции, на выходе оптической камеры расположен делитель, на первом выходе делителя расположено первое измерительное средство для измерения излучения флуоресценции, испускаемого частицами, и для создания сигнала флуоресценции, описывающего излучение флуоресценции, на втором выходе делителя расположено второе измерительное средство для измерения излучения, рассеянного частицами, и для создания сигнала рассеивания, описывающего излучение, рассеянное частицами, устройство для аналого-цифрового преобразования сигналов подключенное к выходам первого и второго измерительных средств для преобразования сигнала флуоресценции и сигнала рассеивания в виде цифровых значений, к выходу устройства для аналого-цифрового преобразования сигналов подключено аналитическое средство для анализа сигнала флуоресценции и сигнала рассеивания для обнаружения биопатогенов, в отличие от известного, в устройство за концентратором до оптической камеры введен термостабилизирующий элемент воздушного потока, и, кроме того, до термостабилизирующего элемента введен узел охлаждения источника излучения, использующий поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения.

Указанный технический результат реализуется за счет следующей конструкции устройства обнаружения биопатогенов в воздухе.

На фигуре показан один из вариантов осуществления устройства обнаружения биопатогенов в воздухе. Устройство обнаружения биопатогенов включает узел 1 для подготовки воздуха, источник излучения (на фигуре не показан), делитель 2, на первом выходе делителя 2 расположено первое измерительное средство 3, на втором выходе делителя 2 расположено второе измерительное средство 4. В узле 1 для подготовки воздуха находятся концентратор 5, оптическая камера 6, соединение 7 отсасываемого потока воздуха из концентратора 5, защитное воздушное соединение 8, верхнее сопло 9, нижнее сопло 10, термостабилизирующий элемент 11 воздушного потока 12. Устройство предназначено для забора воздуха из окружающей среды, концентрирования воздушного потока в концентраторе 5, подачи очищенного воздуха через защитное воздушное соединение 8 к сконцентрированному воздушному потоку 12, находящемуся за термостабилизирующим элементом 11 перед оптической камерой 6. Далее происходит подача сконцентрированного воздушного потока 12 в оптическую камеру 6 через верхнее сопло 9, выведение воздушного потока 12 из оптической камеры 6 происходит через нижнее сопло 10. Термостабилизирущий элемент 11 воздушного потока 12 устанавливается перед оптической камерой 6 и предназначен для поддержания температуры сконцентрированного воздушного потока 12 в определенном диапазоне. Использование термостабилизирующего элемента 11 воздушного потока 12 позволяет увеличить рабочий температурный диапазон, то есть появляется возможность проводить анализ воздуха при температурах окружающей среды, например, от -50°С, тогда как температура воздушного потока внутри устройства поддерживается, например, в диапазоне 20-25°С. Термостабилизирующий элемент 11 воздушного потока 12 реализован с возможностью нагрева сконцентрированного воздушного потока 12 до высоких температур, например, до 120-130°С, при диапазоне температур окружающей среды, например, от -50°С до +50°С. Нагрев воздушного потока 12 до высоких температур позволяет повысить точность обнаружения биопатогенов в воздухе за счет того, что спектры излучения флуоресценции частиц биологического происхождения зависят от температуры этих частиц, а также с изменением температуры биологических частиц изменяется квантовый выход флуоресценции этих частиц. Таким образом, для некоторых типов частиц, спектры излучения флуоресценции которых близки при температуре, например, 20°С, можно подобрать такую температуру воздушного потока 12, при которой спектры излучения флуоресценции различаются в достаточной для идентификации степени. Использование термостабилизирующего элемента 11 воздушного потока 12 повышает точность определения наличия биопатогенов в воздухе и увеличивает диапазон эксплуатационных температур.

Дополнительно устройство обнаружения биопатогенов в воздухе содержит узел охлаждения источника излучения (на фигуре не показан), который в качестве теплоносителя использует воздух, который выводится из концентратора 5 через соединение 7 отсасываемого потока воздуха. Источник излучения независимо от своего типа выделяет тепло, которое необходимо отводить, для поддержания требуемого диапазона температур источника излучения. Использование пассивных или активных систем охлаждения, широко использующихся в других типах устройств недостаточно эффективно в заявляемом устройстве в широком диапазоне температур окружающего воздуха, так как все компоненты устройства находятся в герметичном корпусе. Таким образом, предлагается использовать узел охлаждения, конструктивно представляющий собой, например, радиатор для пассивного охлаждения, который отдает тепло воздуху, который выводится из концентратора 5 через соединение 7 отсасываемого потока воздуха. Использование описанного узла охлаждения источника излучения упрощает конструкцию устройства обнаружения биопатогенов в воздухе.

Источник излучения не показан на фигуре, так как источник излучения расположен перпендикулярно плоскости фигуры. На фигуре отмечен пучок излучения 13, который испускает источник излучения. Пучок излучения 13 представляет собой пучок излучения, сфокусированный на сконцентрированном воздушном потоке 12 между верхним соплом 9 и нижним соплом 10. Средства, необходимые для придания требуемых характеристик пучку излучения 13, не показаны на чертежах, но они могут представлять собой средства, широко используемые в технике.

Делитель 2 включает дихроическое зеркало 14, и может дополнительно включать фильтр 15. Делитель 2 крепится к оптической камере 6. На первом выходе делителя 2 установлено первое измерительное средство 3 предназначенное для измерения излучения флуоресценции, испускаемого частицами, с которыми сталкивается пучок излучения 13, и для создания сигнала флуоресценции 16, описывающего излучения флуоресценции. На втором выходе делителя 2 установлено второе измерительное средство 4 предназначенное для измерения излучения, рассеянного частицами, и для создания сигнала рассеивания 17, описывающего излучение, рассеянное частицами. Внутри оптической камеры 6, может быть расположен оптический элемент 18, выполненный в виде, например, эллиптического зеркала, предназначенного для сбора излучения флуоресценции частиц и излучения, рассеянного частицами, в направлении на делитель 2. Дополнительно устройство обнаружения биопатогенов в воздухе содержит устройство 19 для аналого-цифрового преобразования сигналов, и аналитическое средство 20, данные средства, равно как и алгоритмы, которые используются описанными средствами, могут представлять собой средства, широко используемые в технике.

Устройство 19 для аналого-цифрового преобразования сигналов подключено к выходу первого измерительного средства и выходу второго измерительного средства и предназначено для преобразования в цифровые значения сигнала флуоресценции 16 и сигнала рассеивания 17, которые поступают с первого измерительного средства 3 и второго измерительного средства 4 соответственно. Аналитическое средство 20 подключено к выходу устройства 19 и предназначено для анализа сигнала флуоресценции 16 и сигнала рассеивания 17 на предмет обнаружения биопатогенов в воздухе. Средства тревоги и отображения (на фигуре не показаны), которые подают сигнал тревоги, данные средства, равно как и алгоритмы, которые используются описанными средствами, могут представлять собой средства, широко используемые в технике.

Устройство обнаружения биопатогенов в воздухе работает следующим образом. Производится забор воздуха из окружающей среды. Забранный объем воздуха поступает в концентратор 5. В концентраторе 5 формируется сконцентрированный воздушный поток 12, содержащий в себе большинство частиц, которые находились в забранном объеме воздуха, при этом расход сконцентрированного воздушного потока 12 в несколько раз меньше расхода забранного из окружающей среды воздуха. Оставшаяся часть воздуха выводится из концентратора через соединение 7 отсасываемого потока воздуха, и направляется в узел охлаждения источника излучения. Далее сконцентрированный воздушный поток 12 поступает в термостабилизирующий элемент 11, затем в верхнее сопло 9. В верхнем сопле 9 происходит объединение сконцентрированного воздушного потока 12 с потоком очищенного воздуха, который поступает через защитное воздушное соединение 8. В сопле 9 потоки воздуха объединяются таким образом, что реализуется газовый затвор, препятствующий загрязнению элементов в оптической камере 6 веществами и частицами, которые содержатся в сконцентрированном воздушном потоке. В технической литературе газовый затвор иначе иногда называют аэродинамической фокусировкой или акустической фокусировкой в зависимости от тех средств, которые используются для реализации газового затвора. Различные вариации реализации газового затвора широко известны, например, по устройствам, описанным в патентах US 10267723 В1 (опубл. 23.04.2019), № US 8266950 B2 (опубл. 18.09.2012), № WO 2008122051 А1 (опубл. 09.10.2008), № JР 6456605 В2 (опубл. 23.01.2019), № WO 2014141994 A1 (опубл. 18.09.2014). Воздушный поток 12 протекает через оптическую камеру 6 и выводится через нижнее сопло 10. Далее воздушный поток 12 выводится из устройства. Когда частицы, содержащиеся в воздушном потоке 12, пересекают пучок излучения 13, часть излучения упруго рассеивается частицами, еще часть излучения испускается частицами в виде излучения флуоресценции. Излучение, рассеянное частицами, и излучение флуоресценции частиц поступает на делитель 2, на котором происходит разделение поступившего излучения с помощью дихроического зеркала 14 на излучение флуоресценции, поступающее в первое измерительное средство 3, и излучение, рассеянное частицами, поступающее на второе измерительное средство 4. При необходимости перед первым измерительным средством 3 устанавливается фильтр 15. Первое измерительное средство 3 и второе измерительное средство 4 формируют сигналы флуоресценции 16 и сигналы рассеивания 17 соответственно.

Заявленное устройство представляет собой автоматический прибор, реализующий проточно-оптический метод анализа аэрозолей на предмет содержания в дисперсной фазе аэрозоля биопатагенов. Проточно-оптический метод анализа аэрозолей заключается в том, что устройство забирает воздух из окружающей атмосферы, концентрирует содержащиеся в воздухе частицы в воздушный поток, аэродинамически фокусирует воздушный поток, облучает частицы, содержащиеся в потоке воздуха, излучением, сфокусированным в области анализа, и выполняет анализ излучения, рассеянного частицами, и излучения флуоресценции частиц. Прием излучения, рассеянного частицами, и излучения флуоресценции частиц производится первым измерительным средством и вторым измерительным средством, которые представляют собой оптико-электронные преобразователи, например, фотоэлектронные умножители. Анализ аэрозоля производится в автоматическом беспрерывном режиме работы.

Таким образом, достигается технический результат, а именно повышена точность определения наличия биопатогенов в воздухе и увеличен диапазона эксплуатационных температур и, кроме того, для упрощения конструкции устройства введен узел охлаждения источника излучения, использующего поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения.

Устройство для обнаружения биопатогенов в воздухе, содержащем частицы биологического и/или инертного биологического материала, которое выполнено с возможностью подачи воздушного потока в узел для подготовки воздуха через концентратор внутрь оптической камеры и выведения воздушного потока из оптической камеры, вне узла подготовки воздуха расположен источник излучения, направленный на воздушный поток внутри оптической камеры и испускающий пучок излучения для возбуждения частиц в воздушном потоке для создания излучения флуоресценции и излучения, рассеянного частицами, на выходе оптической камеры расположен делитель, на первом выходе делителя расположено первое измерительное средство для измерения излучения флуоресценции, испускаемой частицами, и для создания сигнала флуоресценции, описывающего излучение флуоресценции, на втором выходе делителя расположено второе измерительное средство для измерения излучения, рассеянного частицами, и для создания сигнала рассеивания, описывающего излучение, рассеянное частицами, устройство для аналого-цифрового преобразования сигналов, подключенное к выходам первого измерительного средства и второго измерительного средства для преобразования сигнала флуоресценции и сигнала рассеивания в виде цифровых значений, к выходу устройства для аналого-цифрового преобразования сигналов подключено аналитическое средство для анализа сигнала флуоресценции и сигнала рассеивания для обнаружения биопатогенов, отличающееся тем, что в устройство за концентратором до оптической камеры введен термостабилизирующий элемент воздушного потока, и, кроме того, до термостабилизирующего элемента введен узел охлаждения источника излучения, использующий поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 23.
23.12.2018
№218.016.aa80

Способ оценки частоты одиночных радиационных эффектов в бортовой аппаратуре космических аппаратов

Изобретение относится к методам обеспечения стойкости электронной бортовой аппаратуры. Сущность изобретения заключается в том, что способ оценки частоты одиночных радиационных эффектов, а именно сбоев и отказов, в бортовой аппаратуре космических аппаратов содержит этапы, на которых дискретные...
Тип: Изобретение
Номер охранного документа: 0002675669
Дата охранного документа: 21.12.2018
10.01.2019
№219.016.ae40

Широкоугольный объектив

Изобретение может быть использовано в качестве фотографического объектива. Широкоугольный объектив состоит из двух оптических компонентов, разделенных воздушным промежутком. Первый компонент содержит отрицательный мениск, обращенный выпуклой стороной к плоскости предметов, двояковыпуклую...
Тип: Изобретение
Номер охранного документа: 0002676554
Дата охранного документа: 09.01.2019
07.02.2019
№219.016.b7ac

Способ оценки облачности ночной атмосферы и датчик ночной облачности для его осуществления

Группа изобретений относится к метеорологическим приборам. Способ оценки облачности ночной атмосферы, реализуемый с помощью датчика ночной области, заключается в формировании цифрового изображения всей небесной полусферы над местностью наблюдения, обработке изображений, оценке ночной...
Тип: Изобретение
Номер охранного документа: 0002678950
Дата охранного документа: 04.02.2019
07.02.2019
№219.016.b7b1

Атермализированный объектив для ик-области спектра

Изобретение предназначено для работы с неохлаждаемым матричным приемником и может быть использовано в качестве объектива тепловизора. Объектив состоит из положительного мениска, обращенного вогнутой поверхностью к плоскости изображений, отрицательного мениска, обращенного вогнутой поверхностью...
Тип: Изобретение
Номер охранного документа: 0002678938
Дата охранного документа: 04.02.2019
30.03.2019
№219.016.f96c

Устройство имитации дальности

Изобретение относится к оптическому приборостроению, в частности к оптическим имитаторам дальности, используемым для проверки работы лазерного дальномера. Устройство имитации дальности для проверки лазерного дальномера содержит по крайней мере один оптический элемент с вогнутой рабочей...
Тип: Изобретение
Номер охранного документа: 0002683604
Дата охранного документа: 29.03.2019
30.03.2019
№219.016.f97f

Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели

Изобретение относится к способам автофокусировки оптико-электронных приборов с высоким качеством изображения в широком интервале рабочих температур. Способ автофокусировки тепловизионного канала оптико-электронной системы поиска и сопровождения цели, при котором определяют функциональную...
Тип: Изобретение
Номер охранного документа: 0002683603
Дата охранного документа: 29.03.2019
14.05.2019
№219.017.51cf

Устройство крепления зеркала телескопа

Изобретение относится к оптическому приборостроению. Устройство крепления зеркала телескопа содержит основание и три опоры, расположенные равномерно по окружности основания. Опоры прикреплены к основанию посредством опорных кронштейнов, закрепленных с помощью болтов-осей, устанавливаемых с...
Тип: Изобретение
Номер охранного документа: 0002687306
Дата охранного документа: 13.05.2019
09.06.2019
№219.017.764b

Всесуточный астрономический комплекс

Изобретение относится к оптическим астрономическим приборам и может быть использовано для осуществления наблюдения искусственных и естественных небесных тел днем, в сумерках и ночью. Всесуточный астрономический комплекс состоит по крайней мере из одного сумеречно-ночного телескопа, пункта...
Тип: Изобретение
Номер охранного документа: 0002690992
Дата охранного документа: 07.06.2019
12.12.2019
№219.017.ebfe

Прибор панорамный

Прибор панорамный выполнен в виде неподвижной монтажной платформы, на которой расположены датчик угла поворота горизонтального направления и двигатель горизонтального направления, обеспечивающий вращение вокруг вертикальной оси поворотной платформы с тепловизионным объективом, в фокальной...
Тип: Изобретение
Номер охранного документа: 0002708535
Дата охранного документа: 09.12.2019
09.02.2020
№220.018.012a

Механизм связи

Изобретение относится к области бронетанковой техники и может быть использовано для передачи углов качания пушки на головное зеркало прицела. Механизм связи пушки танка с прицелом, образованный из двух шарнирных параллелограммов, связанных между собой общей осью вращения, расположенных со...
Тип: Изобретение
Номер охранного документа: 0002713717
Дата охранного документа: 06.02.2020
Показаны записи 1-6 из 6.
27.02.2015
№216.013.2e65

Состав полимерной деконтаминирующей (дезинфицирующей) рецептуры на основе пероксосольвата фторида калия для получения прочных и малопроницаемых пленок, защищающих и деконтаминирующих поверхности в гермозамкнутых объемах различных объектов

Изобретение относится к дезинфекции и представляет собой состав полимерной дезинфицирующей рецептуры для создания пленок, обеспечивающих защиту и дезинфекцию поверхностей внутри гермозамкнутых объемов. Состав содержит пероксосольват фторида калия в количестве 1,0 мас. %, поливиниловый спирт в...
Тип: Изобретение
Номер охранного документа: 0002543345
Дата охранного документа: 27.02.2015
27.08.2015
№216.013.7445

Четырехзеркальный объектив

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого сферического положительного зеркала, обращенного вогнутостью к плоскости предметов, второе зеркало в виде выпуклого сферического отрицательного зеркала, обращенного...
Тип: Изобретение
Номер охранного документа: 0002561340
Дата охранного документа: 27.08.2015
19.01.2018
№218.016.07f1

Зеркально-линзовый объектив для работы в ближнем ик-спектральном диапазоне

Объектив содержит установленные по ходу луча первое зеркало в виде внеосевого фрагмента вогнутого положительного асферического зеркала, второе зеркало в виде выпуклого отрицательного осесимметричного сферического зеркала. Линзовый компенсатор с оптической силой, составляющей 0,6…0,7 от...
Тип: Изобретение
Номер охранного документа: 0002631531
Дата охранного документа: 25.09.2017
04.04.2018
№218.016.2ec1

Прецизионный привод линейного перемещения

Изобретение относится к электротехнике и может использоваться в робототехнике, а также в системах, где требуется прецизионное позиционирование объекта вдоль одной координаты. Прецизионный привод линейного перемещения содержит жесткое основание, шарико-винтовую передачу, приводимую в движение...
Тип: Изобретение
Номер охранного документа: 0002644409
Дата охранного документа: 12.02.2018
30.05.2023
№223.018.730a

Механизм прецизионного позиционирования для изготовления высокоточных оптических устройств

Изобретение относится к оптическому приборостроению, а именно к механизмам прецизионного позиционирования для изготовления высокоточных оптических устройств, и может быть применено при производстве уголковых отражателей (ретрорефлекторов) высокой точности. Механизм состоит из трех угловых...
Тип: Изобретение
Номер охранного документа: 0002771148
Дата охранного документа: 27.04.2022
17.06.2023
№223.018.7e06

Система арретирования оптико-электронной аппаратуры на носителе

Изобретение относится к точному приборостроению и предназначено для позиционирования оптико-электронных приборов на носителе с ограничением по пяти степеням свободы. Заявленная система арретирования оптико-электронной аппаратуры на носителе включает в себя корпус с установленным на нем...
Тип: Изобретение
Номер охранного документа: 0002778461
Дата охранного документа: 19.08.2022
+ добавить свой РИД