×
21.05.2023
223.018.684d

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КОРПУСА ОСКОЛОЧНО-ФУГАСНОГО ЗАРЯДА

Вид РИД

Изобретение

Аннотация: Заявлен способ изготовления корпуса осколочно-фугасного заряда. Техническим результатом является повышение безопасности и процесса изготовления корпуса осколочно-фугасного заряда с системой осколочных элементов, повышение точности изготовления: заданного профиля осколочных элементов. Способ включает формирование системы осколочных элементов ромбического профиля на внутренней поверхности корпуса заряда. Корпус состоит из трех частей, центральной обечайки, фланца и шпангоута. Осколочные элементы ромбического профиля расположены только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки, ограниченных поверхностями с увеличением внутреннего диаметра обечайки на величину, большую, чем глубина канавок, формирующих осколочные элементы. Осколочные элементы ромбического профиля формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом, правых и левых, до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку. Затем формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца, установленного в инструментальную оправку по двум осям, и последовательным вращением трубной заготовки. После чего к обечайке с двух сторон приваривают фланец и шпангоут на установке электронно-лучевой сварки в вакууме, после чего выполняют окончательную обработку наружного диаметра корпуса и формируют группы взаимосвязанных переходных отверстий и элементов крепления и ориентации поражающих элементов во фланце и шпангоуте в составе ракеты. 2 ил.

Предлагаемое изобретение относится к осколочным боеприпасам с системой поражающих элементов на внутренней поверхности корпуса заряда,

Технической проблемой, решаемой изобретением, является необходимость создания на внутренней поверхности такой системы осколочных элементов, которая, с одной стороны могла бы обеспечить высокую эффективность поражающего действия заряда и синхронность срабатывания при задействовании, а, с другой стороны, была бы безопасной в процессе центрирования КОФЗ при снаряжении заряда.

Из уровня техники известен способ изготовления корпуса осколочно-фугасного заряда (КОФЗ) (патент РФ №2409803, МПК F42B 12/22, публ. 20.01.2011 г.), согласно которому на внутренней поверхности КОФЗ выполняют осколочную сетку из спиральных и встречно-направленных рифлей, образующих полуготовые осколки по форме усеченных пирамид, сопряженных своими ромбовидными основаниями. Осколки ориентированы большой диагональю своих оснований под заданным относительно образующей оболочки. Известный способ позволяет получить изделия повышенной эффективности осколочного действия снаряда.

К недостаткам известного аналога относится наличие острых кромок полуготовых осколков выполненных по форме усеченных пирамид, из-за чего формируемый профиль осколочных элементов оболочки (корпуса) при последующем снаряжении заряда в процессе центрирования может быть небезопасен из-за риска биения поверхности заряда острыми кромками сформированных осколочных элементов оболочки.

Задачей авторов изобретения является разработка конструкции системы осколочных элементов оптимального профиля и способа ее изготовления.

Новый технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении безопасности и процесса изготовления КОФЗ с системой осколочных элементов и в повышении точности изготовления: заданного профиля осколочных элементов.

Указанные задача и новый технический результат обеспечиваются тем, что, в отличие от известного способа изготовления корпуса осколочно-фугасного заряда (КОФЗ), включающего формирование системы осколочных элементов ромбического профиля на внутренней поверхности корпуса заряда упорядоченно располагаемых по поверхности КОФЗ, согласно изобретению, КОФЗ выполнен составным из трех частей - центральной обечайки переменного внутреннего диаметра, фланца и шпангоута, осколочные элементы ромбического профиля расположены только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки КОФЗ, ограниченных поверхностями с увеличением внутреннего диаметра обечайки на величину большую, чем глубина канавок, ограничивающих осколочные элементы, осколочные элементы формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом (правых и левых) до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку, формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца установленного в инструментальную оправку по двум осям и последовательным вращением трубной заготовки, после чего к обечайке с двух сторон приваривают фланец и шпангоут на установке методом электронно-лучевой сварки в вакууме.

Заявляемый способ изготовления корпуса осколочно-фугасного заряда поясняется следующим образом.

На фиг. 1 представлен общий вид корпуса осколочно-фугасного заряда, где 1 - шпангоут, являющийся горловиной для заполнения корпуса осколочно-фугасного заряда взрывчатым веществом и местом крепления исполнительного механизма. 2 - центральная обечайка с поражающими элементами, 3 - фланец с ориентированной группой крепежных элементов для крепления системы датчиков на торце корпуса осколочно-фугасного заряда в составе боевой части.

На фиг. 2 показана обечайка со сформированными на ее внутренней поверхности в двух противоположных зонах осколочными профильными элементами.

Первоначально для изготовления КОФЗ формируют систему упорядочении располагаемых осколочных элементов (СОЭ) ромбического профиля на внутренней поверхности корпуса заряда. КОФЗ выполняют составным из трех частей - центральной обечайки переменного внутреннего диаметра, фланца и шпангоута. Осколочные элементы ромбического профиля располагают только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки КОФЗ. Эти зоны ограничены поверхностями с увеличением внутреннего диаметра обечайки КОФЗ на величину большую, чем глубина канавок, ограничивающих осколочные элементы. Осколочные элементы формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом (правых и левых) до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку. Далее формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца установленного в инструментальную оправку по двум осям и последовательным вращением трубной заготовки. Затем методом электронно-лучевой сварки в вакууме к обечайке с двух сторон приваривают фланец и шпангоут.

После завершения процесса механической обработки извлекают обечайку из технологической оправки и подвергают ее внутреннюю поверхность очистке в моющем растворе, затем сушат обдувкой сжатым воздухом. Окончательно изготовленную обечайку подвергают контрольным испытаниям, результаты которых подтвердили соответствие подученных изделий требованиям ТЗ.

Таким образом, при использовании предлагаемого способа обеспечены повышение безопасности процесса изготовления КОФЗ с системой осколочных элементов и повышение точности изготовления заданного профиля осколочных элементов.

Возможность промышленной реализации изобретения подтверждается следующим примером конкретного выполнения.

Пример 1.

Предлагаемый способ выполнения системы осколочных поражающих элементов на центральной обечайке корпуса осколочно-фугасного заряда реализован в лабораторных условиях на опытном образце исходной заготовки в виде полой цилиндрической детали.

Первоначально полую цилиндрическую заготовку корпуса из стали 30ХГСА подвергают механической обработке до заданных размеров на универсальном токарном станке по внутренней и наружной стороне цилиндрической заготовки корпуса, термообрабатывают до получения твердости 27…35 HRC. Затем к планшайбе токарного станка с ЧПУ крепят цилиндрическую технологическую оправку с многочисленными винтовыми прижимами через «тело» оправки, с помощью которых внутри оправки выставляют заготовку корпуса с минимальным радиальным биением внутренней поверхности заготовки корпуса относительно оси привода станка (контролируют с помощью индикаторных часов). В револьверную головку токарного с ганка с ЧПУ устанавливают 3 инструментальные оправки (борштанги) длиной, необходимой для обработки внутренней поверхности заготовки корпуса на всю глубину. К борштангам крепят токарные резцы: к борштанге №1 резец, задающий профиль «правых» канавок, к борштанге №2 резец, задающий профиль «левых» канавок, к борштанге №3 резец для формирования зон, свободных от винтовых канавок с увеличением внутреннего диаметра заготовки корпуса, при этом выставляют пространственное положение инструмента и фиксируют в «памяти» системы управления станка. По разработанной управляющей программе, установленной в «памяти» системы управления станка после ввода команды оператора автоматически борштанга №1 перемещается внутрь заготовки корпуса для подведения режущей части токарного резца в зону обработки, затем происходит строгание (одновременное вращение заготовки корпуса с заданной скоростью и перемещение токарного резца вдоль оси заготовки корпуса с заглублением в тело заготовки и повторением данных циклов с шагом 0,6 мм до обеспечения необходимой глубины канавки) «правых» многозаходных спиральных канавок с заданным шагом. После этого автоматически борштанга п.1 отводится в сторону, а борштанга п.2 перемещается внутрь заготовки корпуса и происходит строгание «левых» многозаходных спиральных канавок с заданным шагом по тому же принципу, что и «правых». Затем борштанга п.2 отводится в сторону, а борштанга п.3 перемещается внутрь заготовки корпуса и происходит строгание зон, свободных от винтовых канавок (перемещение токарного резца вдоль оси заготовки корпуса с заглублением в тело заготовки на всю глубину с припуском 0,05 мм и повторением данного цикла с последовательным вращением заготовки с шагом 0,1 мм до обработки всех заданных зон). Далее проводится чистовая обработка зон, свободных от винтовых канавок по тому же алгоритму, но без припуска.

После завершения процесса механической обработки извлекают обечайку из технологической оправки и подвергают ее внутреннюю поверхность очистке в моющем растворе, затем сушат обдувкой сжатым воздухом. Окончательно изготовленную обечайку подвергают контрольным проверкам с использованием контрольно-измерительной машины на соответствие требованиям КД по овальности и параметрам профиля сформированных канавок.

Пример 2

Предлагаемый способ изготовления корпуса осколочно-фугасного заряда с использованием технологии электронно-лучевой сварки был реализован в лабораторных условиях следующим образом.

Предварительно методом механической обработки с использованием токарного и фрезерного станков с ЧПУ изготавливаются фланец, шпангоут и центральная обечайка с системой осколочных поражающих элементов. На торцах деталей при обработке наносятся технологические риски, совмещение которых при сборке обеспечит в дальнейшем заданное по КД расположение поражающих элементов в составе ракеты.

В технологической оправке собирается корпус осколочно-фугасного заряда с совмещением технологических рисок и устанавливается внутрь камеры установки электронно-лучевой сварки. Из камеры откачивается воздух до давления остаточных газов порядка 10-4 мм рт.ст. После этого выполняется электронно-лучевая сварка двух стыков деталей: обечайки с фланцем, обечайки со шпангоутом на следующих предварительно отработанных режимах сварки:

- скорость вращения корпуса осколочно-фугасного заряда внутри камеры - Т=70 с/об.

- ускоряющее напряжение - U=40kV

- сварочный ток - Iсв=25 mA

- фокусное расстояние Нф=100 мм.

Указанные режимы сварки обеспечивают глубину проплавления 4,7-5,3 мм. отношение твердости материала сварного шва к твердости основного материала деталей корпуса К=1,51. Для снижения твердости сварного шва. производится отжиг места сварки расфокусированным электронным лучом, при этом снижается отношение твердости материала сварного шва к твердости основного материала деталей корпуса до К=1,26.

На этапе отработки проведены механические испытания сваренных образцов на разрыв и изгиб, металлографические исследования сварного шва. Разрушение образцов на разрыв произошло по основному металлу, разрушение образцов на изгиб произошло по металлу околошовной зоны, ширина сварного шва 3-4 мм, глубина проплавления 4,7-5,3 мм, пор, раковин, трещин, свищей в сварном шве не обнаружено.

Данный вид сварки обеспечивает сконцентрированность термического воздействия электронного луча на свариваемые детали, высокую скорость сварки, отсутствие присадочного материала и флюсов, неизменность поддержания технологических режимов сварки, подобранных на этапе отработки, возможность сварки термообработанных деталей и, как следствие, отсутствие коробления.

Далее производится окончательная механическая обработка корпуса осколочно-фугасного заряда на универсальном токарном станке по наружной поверхности до заданного по КД диаметра, а на токарном станке с ЧПУ с торцов корпуса выполняются группы взаимосвязанных переходных отверстий и других конструктивных элементов для крепления и ориентации поражающих элементов в составе ракеты. Также для повышения стойкости к несанкционированному срабатыванию при снаряжении ОФЗ канавки, формирующие систему осколочных поражающих элементов на центральной обечайке корпуса, заполняются герметиком, и вся внутренняя поверхность корпуса осколочно-фугасного заряда покрывается лаком.

Способ изготовления корпуса осколочно-фугасного заряда, включающий формирование системы осколочных элементов ромбического профиля на внутренней поверхности корпуса заряда, отличающийся тем, что корпус состоит из трех частей, центральной обечайки, фланца и шпангоута, при этом осколочные элементы ромбического профиля расположены только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки, ограниченных поверхностями с увеличением внутреннего диаметра обечайки на величину, большую, чем глубина канавок, формирующих осколочные элементы, осколочные элементы ромбического профиля формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом, правых и левых, до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку, затем формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца, установленного в инструментальную оправку по двум осям, и последовательным вращением трубной заготовки, после чего к обечайке с двух сторон приваривают фланец и шпангоут на установке электронно-лучевой сварки в вакууме, после чего выполняют окончательную обработку наружного диаметра корпуса и формируют группы взаимосвязанных переходных отверстий и элементов крепления и ориентации поражающих элементов во фланце и шпангоуте в составе ракеты.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 796.
13.01.2017
№217.015.808d

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам и может быть использовано для охраны помещений и объектов различного назначения. Устройство для охранной сигнализации содержит корпус, подпружиненный относительно корпуса подвижный элемент, магнитоэлектрический генератор, вал которого во взведенном...
Тип: Изобретение
Номер охранного документа: 0002602227
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81ec

Источник металлической плазмы (варианты)

Изобретение относится к источникам металлической плазмы (варианты) и может быть использовано для нанесения защитных, упрочняющих и декоративных покрытий методом катодного распыления на внутренние поверхности изделий, в частности на внутренние поверхности тел вращения, как открытых, так и...
Тип: Изобретение
Номер охранного документа: 0002601725
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8237

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного...
Тип: Изобретение
Номер охранного документа: 0002601772
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8298

Зарядное устройство емкостного накопителя энергии

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии. В зарядное устройство емкостного накопителя энергии, содержащее входной трехфазный...
Тип: Изобретение
Номер охранного документа: 0002601437
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82ae

Резонансный генератор импульсов

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора,...
Тип: Изобретение
Номер охранного документа: 0002601510
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82f2

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга. При этом четыре датчика размещены в экваториальной плоскости МК,...
Тип: Изобретение
Номер охранного документа: 0002601505
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.866c

Способ гиперскоростного метания металлического элемента и кумулятивное метающее устройство для его осуществления

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает...
Тип: Изобретение
Номер охранного документа: 0002603660
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.866e

Гольмиевый лазер для накачки параметрического генератора света

В гольмиевом лазере для накачки параметрического генератора света, включающем источник накачки и размещенные в двухпроходном оптическом резонаторе активный элемент, модулятор добротности, выполненный из материала с кристаллической структурой, новым является то, что модулятор добротности...
Тип: Изобретение
Номер охранного документа: 0002603336
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8675

Система термостабилизации приборного отсека космического аппарата

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы. Радиатор-излучатель выполнен в виде цилиндрического экрана с...
Тип: Изобретение
Номер охранного документа: 0002603690
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8678

Способ формирования гиперскоростного металлического компактного элемента и кумулятивное метающее устройство для его осуществления (варианты)

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны...
Тип: Изобретение
Номер охранного документа: 0002603684
Дата охранного документа: 27.11.2016
Показаны записи 1-3 из 3.
10.04.2016
№216.015.2c1d

Подъемно-транспортная система для обслуживания фасадов зданий

Изобретение относится к подъемникам для жилых, общественных, промышленных зданий и сооружений, а более конкретно к подъемно-транспортным системам для обслуживания фасадов зданий, включающим в себя расположенные на наружной стене здания рельсовые или мачтовые направляющие, снабженные зубцами, и...
Тип: Изобретение
Номер охранного документа: 0002579376
Дата охранного документа: 10.04.2016
10.10.2019
№219.017.d467

Система для очистки фасадов высотных зданий

Настоящее изобретение относится к системам для очистки фасадов зданий, в том числе высотных. Система для очистки фасадов зданий, в том числе высотных, включающая в себя закрепленные неподвижно к поверхности фасада первые направляющие, по которым может перемещаться аппарат очистки фасада,...
Тип: Изобретение
Номер охранного документа: 0002702435
Дата охранного документа: 08.10.2019
12.04.2023
№223.018.4808

Система профилей для закрепления панели на фасаде здания и способ ее установки

Данная группа изобретений относится к системам профилей для закрепления панели на фасаде здания, а также к соответствующим способам их установки. Изобретение может быть использовано при строительстве зданий. Согласно изобретению система включает в себя закрепляемый на внутренней стороне...
Тип: Изобретение
Номер охранного документа: 0002741424
Дата охранного документа: 26.01.2021
+ добавить свой РИД