×
16.05.2023
223.018.622f

Результат интеллектуальной деятельности: Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена и его применение в перовскитных солнечных батареях

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в перовскитных солнечных батареях. Технический результат заключается в увеличении преобразования солнечной энергии. 2 н.п. ф-лы, 7 ил., 2 пр.

Изобретение относится к новым органическим соединениям, полупроводниковым материалам на основе этих соединений и их использованию в перовскитных солнечных батареях. Перовскитные солнечные батареи (ПСБ) интенсивно исследуются во всем мире в последние годы и рассматриваются как перспективная технология преобразования солнечной энергии в электрическую. Менее чем за 10 лет эффективность преобразования солнечного света в ПСБ выросла до 25.5%, что близко к параметрам солнечных батарей на основе кристаллического кремния (26.7%).

При изготовлении перовскитных солнечных батарей особое внимание уделяется слоям, находящимся между фотоактивным слоем и электродами, поскольку они во многом определяют эффективность и стабильность работы устройств [T.-W. Lee et al., Energy Environ. Sci., 2016, 9, 12-30; C.-Z. Li et al., Chin. Chem. Lett., 2017, 28, 503-511]. Эти буферные слои представлены электрон-транспортными и дырочно-транспортными материалами, способными селективно извлекать из перовскитного слоя, соответственно, отрицательные и положительные носители зарядов, и обеспечивать их эффективный транспорт к соответствующим электродам в устройстве.

В большинстве случаев в качестве дырочно-транспортного материала используют соединение spiro-OMeTAD, 2,2',7,7'-тетракис[N,N-di(4-метоксифенил)амино]-9,9'-спиробифлуорен (Фиг. 1) [Y. Qi et al., Adv. Mater. Interfaces, 2018, 5, 1700623]. Однако spiro-OMeTAD обладает плохими зарядово-транспортными свойствами и потому требует легирования (допирования) с помощью, например, кислорода и дополнительных реагентов, таких как LiTFSI (бис(трифторсульфон)имид лития) и tBuPy (4-трет-бутилпиридина) [A. Sellinger et al., Chem. Sci., 2019, 10, 1904]. Как сам процесс допирования, так и использование LiTFSI и tBuPy, отрицательным образом влияют на стабильность перовскитных солнечных батарей; в частности, катион-радикалы spiro-OMeTAD способны окислять анионы Т в активном слое, приводя к его разложению [Т. Miyasaka et al., J. Mater. Chem. A, 2018, 6, 2219; C. Adachi et al., Sol. RRL, 2020, 4, 2000305; G. Chen et al., J. Renew. Sust. Energy, 2018, 10, 043702]. Кроме того, spiro-OMeTAD является низкомолекулярным соединением, способным к кристаллизации при повышенных температурах, что приводит к потере целостности его пленок и выходу солнечных элементов из строя.

С учетом вышесказанного, остро встает проблема разработки принципиально новых дырочно-транспортных материалов, причем на основе аморфных полимерных соединений. Эта задача отчасти решается использованием полимерных ароматических аминов, таких как РТАА -поли[бис(4-фенил)(2,4.6-триметилфенил)амина (Фиг. 2). Однако этот полимер имеет несопряженную структуру, потому отличается низкой подвижностью носителей зарядов и плохо работает в перовскитных солнечных батареях без допирования: КПД преобразования света обычно не превышает 13% [С.Jia et al., Energy Environ. Sci., 2018, 11, 2035]. Более высокие к.п.д. достигаются путем допирования полимера, например, кислородом воздуха [J. Fang et al., Adv. Sci., 2018, 5, 1800159], что также плохо влияет на стабильность работы устройств. Таким образом, использование полимерных ароматических аминов, таких как РТАА, не решает проблему создания эффективных и стабильных перовскитных солнечных элементов. Решение этой проблемы требует получения и использования сопряженных полимерных структур, обладающих хорошими дырочно-транспортными свойствами без дополнительного допирования.

В данном изобретении предлагается применение нового сопряженного полимера Р1 на основе бензодитиофена, 5,6дифторбензо[с][1,2,5]тиадиазола и тиофена следующего строения:

где n=5-200,

в качестве дырочно-транспортного материала в перовскитных солнечных батареях. Повторяющееся звено полимера Р1 состоит из следующих блоков: электронодонорного 4,8-бис(4-децил-5-((2-этилгексил)тио)тиофен-2-ил)-2,6-бис(3'-(2-гексилдецил)-[2,2'-битиофен]-5-ил)бензо[1,2-b:4,5-b']дитиофена чередующегося с электроноакцепторным 2,5-бис(5,6-дифторбензо[с][1,2,5] тиадиазол-4-ил)тиофеном, связанных по положениям 7 и 7' бензотиадиазольных фрагментов и положениям 5' и 5'' переферийных тиофеновых звеньев битиофеновых фрагментов. Длина полимерной цепи может варьироваться в пределах от 5 до 200 звеньев (Фиг. 3).

Использование полимера Р1 в составе перовскитных солнечных батарей в качестве дырочно-транспортного слоя позволяет:

• сформировать сплошные изолирующие дырочно-транспортные покрытия поверх зернистого фотоактивного материала, предотвращая его реакцию с металлом верхнего электрода;

• обеспечить эффективный транспорт положительных носителей зарядов (дырок) к верхнему дырочно-собирающему электроду устройства;

• Обеспечить высокую эффективность перовскитных солнечных элементов (КПД>18%) без допирования дырочно-транспортного слоя.

Полимер Р1 был получен по стандартной реакции поликонденсации Стилле в соответствии со схемой, представленной на Фиг. 4. Реакция поликонденсации Стилле широко используется для синтеза материалов для органической электроники, в частности, сопряженных полимеров для органических солнечных батарей [Н. Mori, R. Takahashi, К. Hyodo, S. Nishinaga, Y. Sawanaka, and Y. Nishihara, Macromolecules 2018, 51, 1357-1369; C. Gu, D. Liu, J. Wang, Q. Niu, C. Gu, B. Shahid, B. Yu, H. Cong and R. Yang, J. Mater. Chem. A, 2018, 6, 2371-2378].

Полимер был очищен от низкомолекулярных соединений в аппарате Сокслета последовательной промывкой ацетоном, гептаном, хлористым метиленом и хлорбензолом. Высокомолекулярная фракция, полученная из хлорбензола, использовалась для дальнейших исследований. Средневесовая молекулярная масса полимера составила 246000 г/моль, а коэффициент полидисперсности - 2.7. Полимер Р1 хорошо растворим во многих органических растворителях, таких как хлорбензол, толуол и 1,2-дихлорбензол, что указывает на перспективы его дальнейшего использования.

Важной особенностью нового полимера Р1 являются его хорошие оптоэлектронные характеристики. Из данных циклической вольтамперометрии был определен потенциал подъема волны окисления полимера (отн. пары Fc/Fc+, EFc/Fc+=-4,8 эВ), из которого оценена энергия высшей занятой молекулярной орбитали ВЗМО полимера Р1 как -5.4 эВ. Энергия низшей свободной молекулярной орбитали (НСМО) была рассчитана как EgoptВЗМО (эВ) и составила -3.7 эВ. Энергия ВЗМО для Р1 очень хорошо соответствует положению валентной зоны перовскитного материала (-5,4 эВ) [Q. Chen, N. De Marco, Y. Yang, Т.-В. Song, С.-С. Chen, H. Zhao, Z. Hong, Н. Zhou, Y. Yang Nano Today 2015, 10, 355], что должно обеспечивать эффективную экстракцию положительных носителей заряда. Материалы с подобными характеристиками являются оптимальными для использования в перовскитных солнечных батареях в качестве дырочно-транспортных слоев.

Конструкция перовскитной солнечной батареи классического типа (n-i-p структура) с применением полимера Р1 в качестве дырочно-транспортного слоя представлена на Фиг. 5. Она состоит из прозрачной электропроводящей подложки на основе оксида индия, легированного оловом (ITO), которая также является электрон-собирающим электродом 0, электрон-селективного слоя 1, фотоактивного слоя 2, дырочно-транспортного слоя 3, представленного пленкой полимера Р1, электрон-блокирующего слоя 4 и верхнего дырочно-собирающего электрода 5.

Электрон-селективный слой, предназначенный для блокирования дырок и переноса электронов из активного слоя солнечной батареи на электродный слой 0. В состав электрон-селективного слоя могут входить оксиды металлов TiO2, SnO2, ZnO, In2O3, WO3, CeO2, Zn2SnO4, Nb2O5, Zn2Ti3O8, BaSnO3, BaTiO3, SrSnO3 и др., халькогениды металлов CdS, CdSe, PbS, PbSe, PbTe, ZnS, ZnSe, Sb2S3, Bi2S3, In2S3, MnS, SnS, SnS2, органические соединения из ряда карбоновых и фосфоновых кислот, производные фуллеренов, производные перилендиимида, нафталиндиимида, аценов, оксидиазолов, и любых органических полупроводников n-типа. Толщина электрон-селективного слоя может составлять от 1 до 200 нм.

Фотоактивный слой 2 представляет собой любой перовскитный полупроводниковый материал общей формулы АВХ3, где А - одновалентный катион, В - Sn2+, Pb2+, X - атом галогена (Br-, I-). Предпочтительными органическими катионами А являются метиламмоний (MA) - CH3NH3+ и формамидиний (FA) - [H2NCHNH2]+. Предпочтительным неорганическим катионом является Cs+. Возможны также варианты состава фотоактивного слоя, где используются комбинации органических катионов и атомов галогена. Например, MAxFA1-xPbIyBr3-y, где х=0÷1, у=0÷3. Изменение индексов х и у может оказывать влияние на эффективность и стабильность устройств. Наиболее предпочтительным составом фотоактивного слоя является Cs0.12FA0.88PbI3. Толщина фотоактивного слоя может составлять от 100 до 1000 нм.

Дырочно-транспортный слой 3 представлен пленкой сопряженного полимера Р1 толщиной от 5 до 100 нм.

Электрон-блокирующий слой 4 представлен оксидами металлов р-типа, такими как МоО3 или МоОх (х~3), V2O5 или VOx (х~2.5), CuOx (х=0.5-1.0) толщиной от 1 до 100 нм.

Дырочно-собирающий электрод 5 толщиной от 30 до 300 нм может быть полупрозрачным или непрозрачным для излучения видимого спектрального диапазона. Полупрозрачный дырочно-собирающий электрод может быть изготовлен с использованием прозрачных электропроводящих оксидов: оксида индия, легированного оловом, оксида олова, легированного фтором, оксида цинка, легированного алюминием и других проводящих оксидов. В качестве полупрозрачных электродных материалов могут также быть использованы пленки электропроводящих полимеров, таких как PEDOT:PSS полиэтилендиокситиофен:полистиролсульфонат, полианилины и полипирролы. Кроме того, полупрозрачные электроды могут формироваться на основе металлов, т.е. использоваться металлические микросетки, нанопроволоки и ультратонкие пленки золота, серебра, меди, никеля, алюминия или других металлов. Полупрозрачный электрод также может быть изготовлен на основе углеродных материалов: графена, углеродных нанотрубок, нановолокон и др. В качестве полупрозрачного электродного слоя могут быть использованы как индивидуальные материалы из перечисленных выше, так и любые их комбинации. Для формирования непрозрачного дырочно-собирающего электрода могут быть использованы пленки металлов (например, Ag, Cu, Ni, Cr, Al, Au, Pt, и др.) или их сплавов (нихром, хромель и др.), а также другие материалы, обладающие свойствами металлов или полуметаллов (например, нитрид титана, графит, разные варианты сажи).

Перовскитная солнечная батарея с использованием полимера Р1 в качестве дырочно-транспортного слоя показала следующие характеристики:

Напряжение холостого хода: 1093 мВ;

Плотность тока короткого замыкания: 23.4 мА/см2;

Факторы заполнения: 77%;

Эффективность (КПД) преобразования света: 19.7%

Референсное устройство, изготовленное с использованием РТАА в качестве материала дырочно-транспортного слоя в тех же условиях, показало худшие характеристики:

Напряжение холостого хода: 1070 мВ;

Плотность тока короткого замыкания: 22.1 мА/см2;

Факторы заполнения: 72%;

Эффективность (КПД) преобразования света: 17.1%

Вольтамперная характеристика для перовскитной солнечной батареи с использованием полимера Р1 представлены на Фиг. 6.

Данное изобретение иллюстрируется следующими примерами.

Пример 1. Синтез полимера Р1 В трехгорлую колбу на 50 мл помещали мономеры M1 (210 мг; 0,155 ммоль), М2 (193 мг; 0,155 ммоль), катализатор Pd2(dba)3, где dba - дибензилиденацетон (5 мг; 0,005 ммоль), дополнительный лиганд три(о-толил) фосфин (5 мг; 0,015 ммоль) и толуол (20 мл). Трижды дегазировали реакционную массу и заполняли аргоном. Колбу погружали в масляную баню и нагревали до 110°С, после чего начинали контролировать реакцию методом гель-проникающей хроматографии (ГПХ) каждый 30 минут. При достижении Mw~200000 г/моль (требуется обычно 4-5 ч) останавливали реакцию путем последовательного введения в реакционную смесь триметил(тиофен-2-ил) станнана и бромтиофена с промежутком в 30 минут. Затем реакционную массу выливали в метанол (50 мл), выпавший в осадок полимер отфильтровывали на воронке Бюхнера и сушили в вакуумном эксикаторе. После этого растворяли полимер в 1,2-дихлорбензоле (40 мл) при перемешивании в течении 3-х часов при 90°С. Далее выливали раствор полимера в изопропанол (300 мл) и фильтровали выпавший в осадок полимер через гильзу для экстракции. Затем гильзу с полимером помещали в аппарат Сокслета и последовательно промывали ацетоном, хлористым метиленом и хлорбензолом. Хлорбензольную фракцию упаривали до объема 20 мл и высаживали изопропанолом (150 мл). Осадок отделяли на воронке Бюхнера и сушили в вакуумном эксикаторе. Масса хлорбензольной фракции составила 248 мг, выход полимера Р1 - 78%. Анализ очищенного полимера проводили на ГПХ колонке в сравнении с серией стандартов F8BT (поли[(9,9-ди-n-октилфлуоренил-2,7-диил)@(бензо[2,1,3] тиадиазол-4,8-диил)]). Средневесовая молекулярная масса составила Mw=206000 г/моль, индекс полидисперсности PDI=2.3.

Пример 2. Изготовление перовскитной солнечной батареи с применением полимера Р1 в качестве дырочно-транспортного слоя.

Перовскитная солнечная батарея имеет конструкцию, представленную на Фиг. 5. Для изготовления солнечной батареи были использованы стекла (25x25 мм) с нанесенной пленкой проводящего оксида индия, легированного оксидом олова (ITO) с сопротивлением 10-12 Ом/ и толщиной проводящего слоя до 125 нм. Подложки были отмыты последовательно в дистиллированной воде, толуоле (осч) и ацетоне (осч), а затем очищены в воде, ацетоне (осч) и изопропаноле (осч) с помощью ультразвука. Непосредственно перед нанесением зарядово-транспортных слоев, подложки были дополнительно выдержаны в плазме воздуха в течение 5 мин. На очищенные подложки был нанесен раствор прекурсора SnO2 (50 мкл), приготовленный разбавлением 15% водной коллоидной дисперсии SnO2 (Alfa-Aesar) в 1,5 раза дистиллированной водой, при скорости вращения подложки 4000 об/мин в течение 40 секунд. Далее пленки были прогреты при 175°С на воздухе в течение 15 мин и затем еще 10 мин при 120°С в инертной атмосфере азота в перчаточном боксе. Пленки SnO2 пассивировали нанесением раствора фенил-С61-масляной кислоты (0,1 мг/мл) в хлорбензоле (3500 об/мин, 30 с) с последующим отжигом при 100°С в течение 10 мин. Пленки перовскита MAPbI3 были нанесены методом центрифугирования из 1,4 М раствора предшественника (йодид метиламмония и PbI2 в эквимолярных соотншениях, 60 мкл) в смеси N,N-диметилацетамида и N-метил пирролидона в соотношении 4:1 по объему при 4000 об/мин. Через 10 секунд после нанесения указанного раствора на вращающуюся подложку выливали 120 мкл толуола, что вызывало ускоренную кристаллизацию перовскита. Затем пленки выкладывали на притку при 50°С, нагревали до 100°С и выдерживали при этой температуре в течение 5 мин в инертной атмосфере азота. Раствор полимера Р1 (6 мг/мл в хлорбензоле), наносили центрифугированием на пленки MAPbI3 при 1000 об/мин. Электрон-блокирующий слой (30 нм V2O5) и дырочно-собирающий электрод (120 нм Ag) наносили испарением исходных веществ в вакууме (106 мм.рт.ст).

Перовскитная солнечная батарея с использованием полимера Р1 в качестве дырочно-транспортного слоя показала следующие характеристики:

Напряжение холостого хода: 1093 мВ;

Плотность тока короткого замыкания: 23.4 мА/см2;

Факторы заполнения: 77%;

Эффективность (КПД) преобразования света:

19.7% Референсное устройство, изготовленное с использованием РТАА в качестве материала дырочно-транспортного слоя в тех же условиях, показало худшие характеристики:

Напряжение холостого хода: 1070 мВ;

Плотность тока короткого замыкания: 22.1 мА/см2;

Факторы заполнения: 72%;

Эффективность (КПД) преобразования света: 17.1%

Вольтамперные характеристики для перовскитной солнечной батареи с использованием полимера Р1 и референсного РТАА представлены на Фиг. 6, а спектры внешней квантовой эффективности - на Фиг. 7.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 35.
25.08.2017
№217.015.b0b8

Способ получения комплексов платины (iv) с аминонитроксильными радикалами

Изобретение относится к процессу получения комплексов платины(IV) с аминонитроксильными радикалами, полученных при этом продуктов и их использования. Описан способ получения комплексов платины(IV) с аминонитроксильными радикалами общей формулы 1 где А - гетероциклический нитроксильный радикал...
Тип: Изобретение
Номер охранного документа: 0002613513
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.e844

Способ получения n,n-бис(4,6-диазидо-1,3,5-триазин-2-ил)амина

Изобретение относится к способу получения N,N-бис(4,6-диазидо-1,3,5-триазин-2-ил)амина (I) путем взаимодействия N,N-бис(4,6-дихлор-1,3,5-триазин-2-ил)амина с азидирующим агентом, в качестве которого используют азид натрия, в среде водного ацетона при комнатной температуре, с последующим...
Тип: Изобретение
Номер охранного документа: 0002627357
Дата охранного документа: 07.08.2017
29.12.2017
№217.015.f94a

3,4,5-триазидопиридин-2,6-дикарбонитрил и способ его получения

Изобретение относится к 3,4,5-триазидопиридин-2,6-дикарбонитрилу формулы (I) и способу его получения. 3,4,5-Триазидопиридин-2,6-дикарбонитрил формулы (I) получен азидированием 3,4,5-трихлорпиридин-2,6-дикарбонитрила азидом натрия в водном ацетоне. Изобретение может быть использовано для...
Тип: Изобретение
Номер охранного документа: 0002639303
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.1cee

2,3,5,6-тетраазидопиридин-4-карбонитрил и способ его получения

Изобретение относится к 2,3,5,6-тетраазидопиридин-4-карбонитрилу формулы (I) и способу его получения. 2,3,5,6-Тетраазидопиридин-4-карбонитрил формулы (I) получен азидированием тетрафторпиридин-4-карбонитрила азидом натрия в водном ацетоне, процесс ведут на воздухе при несильном нагревании....
Тип: Изобретение
Номер охранного документа: 0002640415
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1e14

Полимерное соединение и его применение в фотовольтаических устройствах

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления полимерных фотовольтаических, светоизлучающих устройств и органических транзисторов, а также к способу получения полимерного соединения и его применению. Полимерное соединение имеет общую...
Тип: Изобретение
Номер охранного документа: 0002640810
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1f9c

Полимерное соединение и его применение в фотовольтаических устройствах

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления различных органических или гибридных оптоэлектронных изделий, структур и устройств, в том числе органических фотовольтаических устройств и органических светоизлучающих транзисторов, а также...
Тип: Изобретение
Номер охранного документа: 0002641103
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.21d1

Способ переработки попутных и природных газов

Изобретение относится к способу переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов :...
Тип: Изобретение
Номер охранного документа: 0002641701
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.3067

Способ получения синтез-газа

Изобретение относится к процессам получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Способ получения синтез-газа основан на горении смеси углеводородного сырья с окислителем с внутри одной или нескольких полостей, образованных материалом,...
Тип: Изобретение
Номер охранного документа: 0002644869
Дата охранного документа: 14.02.2018
12.07.2018
№218.016.6ff2

Способ получения наноструктурированных платиноуглеродных катализаторов

Изобретение относится к области химических источников тока, а именно к способу получения катализаторов с наноразмерными частицами платины на углеродных носителях для электродов низкотемпературных топливных элементов (НТЭ), который заключается в том, что процесс электрохимического...
Тип: Изобретение
Номер охранного документа: 0002660900
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.704b

Никель-графеновый катализатор гидрирования и способ его получения

Изобретение относится к никель-графеновому катализатору гидрирования, содержащему 10-25 мас. % нанокластеров никеля размером 2-5 нм, нанесенных на углеродные наночастицы. Причем в качестве носителя он содержит восстановленный оксид графита, представляющий собой чешуйки восстановленного оксида...
Тип: Изобретение
Номер охранного документа: 0002660232
Дата охранного документа: 10.07.2018
Показаны записи 11-20 из 56.
10.07.2014
№216.012.dbaa

Применение аминных производных фуллеренов с60 и с70 и композиций на их основе в качестве противомикробных средств

Изобретение относится к химическо-фармацевтической промышленности и касается применения производных фуллеренов общей формулы 1 где в общей формуле 1 фрагмент C обозначает: углеродный каркас фуллерена C (n=30), C (n=35); где в общей формуле 1 «x» может принимать значения от 4 до 12, а «y» -...
Тип: Изобретение
Номер охранного документа: 0002522012
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.df69

Способ изготовления металл-оксидного каталитического электрода для низкотемпературных топливных элементов

Изобретение относится к области химических источников тока, а именно к способу изготовления и материалу каталитического электрода - элемента мембранно-электродного блока для водородных и спиртовых топливных элементов. Металл-оксидный каталитический электрод представляет собой пористый...
Тип: Изобретение
Номер охранного документа: 0002522979
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e86b

Способ получения ультрагидрофобных покрытий для борьбы с обледенением больших площадей

Изобретение относится к способу получения ультрагидрофобных покрытий многоразового (долговременного, возобновляемого) использования для борьбы с обледенением больших площадей (крыльев самолетов, строений, линий электропередачи, панелей солнечных батарей и т.д.). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002525292
Дата охранного документа: 10.08.2014
20.09.2014
№216.012.f477

Органическое фотовольтаическое устройство, способ его изготовления и применение фторсодержащих модификаторов для улучшения характеристик органических солнечных батарей

Изобретение относится к области органической электроники, а именно к органическим фотовольтаическим устройствам (солнечным батареям и фотодетекторам), изготовленным с использованием органических фторсодержащих соединений в качестве модифицирующих добавок. Изобретение относится к органическому...
Тип: Изобретение
Номер охранного документа: 0002528416
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.0727

Применение поликарбоксильного производного фуллерена в качестве микробицидного противовирусного средства

Изобретение относится к медицине, а именно к применению поликарбоксильного производного фуллерена С в качестве микробицидного противовирусного средства для ингибирования вирусов простого герпеса (ВПГ) и цитомегаловируса (ЦМВ). Производное поликарбоксильного фуллерена Симеет структурную формулу...
Тип: Изобретение
Номер охранного документа: 0002533232
Дата охранного документа: 20.11.2014
20.02.2015
№216.013.2a2b

Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала

Группа изобретений относится к полимеризационноспособной фотохромной изоцианатной композиции, содержащей фотохромное соединение, к фотохромному сетчатому оптическому материалу и к способу его получения. Полимеризационноспособная фотохромная изоцианатная композиция включает, мас.ч.: органическое...
Тип: Изобретение
Номер охранного документа: 0002542252
Дата охранного документа: 20.02.2015
10.05.2015
№216.013.485b

Наноагрегаты водорастворимых производных фуллеренов, способ их получения, композиции на основе наноагрегатов водорастворимых производных фуллеренов, применение наноагрегатов водорастворимых производных фуллеренов и композиций на их основе в качестве биологически-активных соединений, для понижения токсичности и усиления терапевтического действия лекарственных препаратов, а также в качестве препаратов для лечения онкологических заболеваний

Изобретение относится к наноагрегатам водорастворимых производных фуллеренов, которые могут применяться для понижения токсичности и усиления терапевтического действия лекарств против онкологических заболеваний. Предложены наноагрегаты водорастворимых производных фуллеренов общей формулы...
Тип: Изобретение
Номер охранного документа: 0002550030
Дата охранного документа: 10.05.2015
20.08.2015
№216.013.7138

Сопряженный полимер на основе карбазола, бензотиадиазола, бензола и тиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах

Изобретение относится к области органической электроники, а именно к сопряженному полимеру на основе карбазола, бензотиадиазола, бензола и тиофена формулы (Poly-1), где n=5-200. Сопряженный полимер применяют в качестве электролюминесцентного материала в органических светоизлучающих диодах,...
Тип: Изобретение
Номер охранного документа: 0002560554
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.75aa

Способ изготовления каталитического электрода на основе гетерополисоединений для водородных и метанольных топливных элементов

Изобретение относится к области электротехники, а именно к способу изготовления каталитического электрода мембрано-электродного блока, преимущественно для водородных и метанольных топливных элементов. Способ изготовления каталитического электрода топливного элемента включает изготовление...
Тип: Изобретение
Номер охранного документа: 0002561711
Дата охранного документа: 10.09.2015
20.10.2015
№216.013.8574

Инициирующая система анионного типа для полимеризации и сополимеризации акрилонитрила и способ получения полиакрилонитрила и сополимеров акрилонитрила

Изобретение относится к инициирующей системе анионного типа, а также к способу получения волокнообразующего полиакрилонитрила и сополимеров акрилонитрила с использованием инициирующей системы. Инициирующая система содержит в своем составе атомы углерода, водорода, азота и кислорода и состоит...
Тип: Изобретение
Номер охранного документа: 0002565767
Дата охранного документа: 20.10.2015
+ добавить свой РИД