×
16.05.2023
223.018.6210

Результат интеллектуальной деятельности: Обратный клапан установок электроцентробежных насосов для высокодебитных скважин

Вид РИД

Изобретение

Аннотация: Обратный клапан предназначен в качестве комплектующего устройства в установке электроцентробежного насоса для добычи продукции из скважин, преимущественно с большими добычными возможностями (≥500 м/сут). Обратный клапан снабжен верхним и нижним переводниками, причем в верхнем переводнике установлен с возможностью замены фигурный стакан для неподвижного охвата шара-клапана, а в нижнем переводнике с возможностью замены установлено посадочное седло из абразивостойкого материала с широким проходным отверстием, нижний торец фигурного стакана, обращенный в сторону седла, снабжен по меньшей мере четырьмя зубчатыми модулями для обеспечения возможности беспрепятственного входа и выхода шара-клапана во внутреннюю полость фигурного стакана, а также удержания его от автоколебаний в фигурном стакане, а шар-клапан выполнен из абразивостойкого керамического материала. В верхней части фигурного стакана выполнены боковые сквозные радиальные каналы, не менее трех, под углом α=30°…45° к оси вращения фигурного стакана. Выше посадочного седла на нижнем переводнике выполнена коническая фаска под углом β=30°…45° к оси вращения корпуса обратного клапана. Изобретение направлено на снижение скоростных потоков во внутренней полости клапана, устранение зон турбулизации потока, расширение площади сечения проходных гидравлических каналов, защиту запорного элемента от прямого абразивного воздействия откачиваемой продукции. 1 з.п. ф-лы, 5 ил.

Обратный клапан установок электроцентробежных насосов (ОК) относится к изделиям нефтяного машиностроения и предназначен в качестве комплектующего устройства к установке электроцентробежного насоса (УЭЦН) для добычи скважинной продукции (газо-жидкостной смеси) преимущественно из высокодебитных скважин (≥500 м3/сут).

В последнее десятилетие для интенсификации притока из скважин их бурят с горизонтальным окончанием стволов, а также проводят многостадийный гидравлический разрыв продуктивного пласта. Эксплуатация этих скважин требует применения внутрискважинного оборудования повышенной эксплуатационной надежности для всех составных частей этого оборудования, в том числе электроцентробежных насосов (ЭЦН), погружного электродвигателя (ПЭД) и обратного клапана (ОК), включаемых в состав внутрискважинного оборудования. Обратный клапан должен выполнять целый ряд важных функций: сохранять работоспособное состояние при опрессовке спускаемых в скважину насососно-компрессорных труб (НКТ); предупреждать слив скважинной продукции из НКТ при остановках УЭЦН; облегчать повторный или периодический запуск УЭЦН; исключать эффект «турбинного» вращения вала электроцентробежного насоса.

При использовании известных и освоенных нефтяным машиностроением ОК, их применение в скважинах, оборудованных УЭЦН, сопряжена с их частыми отказами, которые вызванны эрозией мест уплотнений и сужений в проходных каналах высокоскоростными потоками откачиваемой продукции и утраты герметизирующей способности. В составе откачиваемой из скважины жидкости (флюиды пласта) содержатся механические примеси, ускоряющие процесс абразивной эрозии мест уплотнений. Особенно это проявляется при эксплуатации УЭЦН в высокодебитных скважинах (≥500 м3/сут). В этой связи техническая задача по созданию ОК для высокодебитных скважин, оборудованных УЭЦН, с увеличенным ресурсом безотказной работы, является актуальной и подлежит рассмотрению, с учетом разрабатываемых инновационных технических и технологических решений.

При проведении патентных исследований известных технических решений по ОК выявлены многочисленные решения клапанов, которые разработаны, описаны в технической литературе и используюся в различных отраслях промышленности, где по техническим условиям работы требуется автоматическое предупреждение обратных перетоков технологических жидкостей и газов в различных гидравлических системах. В качестве запорных элементов в ОК в нефтяной промышленности известны тарельчатые, лепестковые и шаровые, которые требуют соответствующего анализа и их технической оценки.

Известен обратный клапан установки электроцентробежного насоса (патент на полезную модель №152084 МПК F16K 15/00) [1], тарельчатого типа. При простоте конструктивного исполнения тарельчатый вариант обратного клапана не может быть длительно использован в высокодебитных скважинах с УЭЦН, в связи с влиянием большого лобового сопротивления тарелки-клапана и интенсивного проявления абразивной эрозии тарелки и внутренней полости клапана.

Известен обратный клапан (патент на изобретение №2544930 МПК Е21В 34/06) [2], который выполнен с возможностью промывки полости электроцентробежного насоса от твердых осадков. Он имеет запорное устройство в виде тарельчатого клапана. Это техническое решение не исключает ускоренное развитие эрозионных процессов уплотнительных элементов обратного клапана в условиях повышенного содержания мехпримесей (≥1 г/л) и дебитах скважины (≥500 м3/сут).

Известен обратный клапан УЭЦН (патент на изобретение №2187709 МПК F04D 15/02) [3]. Данный ОК рекомендован для установки в верхней секции электроцентробежного насоса (ЭЦН) в его модуле-головке. При добыче нефти с большим содержанием попутного газа (газо-жидкостной смеси) такое техническое решение приводит к осложнениям на этапе запуска ЭЦН в работу так как закрытый обратный клапан, размещенный в непосредственной близости от рабочих колес ЭЦН, приводит к скоплению газа в полости рабочих секций ЭЦН, что препятствует его штатному запуску в работу после вынужденных остановок.

Наиболее близким по технической сущности решением выявлен обратный клапан для УЭЦН (патент на изобретение RU №2379566 МПК F16K 15/04) [4], принятый за прототип, включающий корпус, седло, клапанную клетку, запорный элемент-шар, установленный в ограничителе с коническими отверстиями, переходящие в конусные отверстия для увеличения проходного отверстия.

Недостатком обратного клапана по выявленному патенту является интенсивный абразивный износ (эрозия), как запорного элемента-шара, расположенного в непосредственной близости от седла и недостаточным диаметром проходного отверстия, так и ограниченных по площади живого сечения каналов для пропуска откачиваемой из скважины жидкости в клапанной клетке. Ресурс работы известного ОК, при эксплуатаци в высокодебитных скважинах с повышенным содержанием механических примесей (≥1 г/л), существенно снижен и не устраивает нефтяников, с учетом современных техических требований.

В этой связи задачей предлагаемого технического решения является увеличение ресурса работы обратного клапана с УЭЦН в высокодебитных скважинах (≥500 м3/сут), в условиях откачки скважинной продукции (газожидкостной смеси), с содержанием механических примесей (≥1 г/л).

Поставленная цель достигается конструкторско-технологическими приемами, с использованием технических решений изобретательского уровня.

Обратный клапан установок электроцентробежных насосов для высокодебитных скважин, включает цилиндрический корпус с присоединительными резьбами и размещенными в нем посадочным седлом с шар-клапаном, при этом обратный клапан снабжен верхним и нижним переводниками, в верхнем переводнике, соосно с корпусом обратного клапана, установлен, с возможностью замены, фигурный стакан, для неподвижного охвата шара-клапана, а в нижнем переводнике, с возможностью замены, установлено посадочное седло из абразивостойкого материала, с широким проходным отверстием, при этом, нижний торец фигурного стакана, обращенный в сторону седла, снабжен, по меньшей мере четырьмя зубчатыми модулями для обеспечения возможности беспрепятственного входа и выхода шара-клапана во внутреннюю полость фигурного стакана, а также удержания его от автоколебаний в фигурном стакане, а шар-клапан выполнен из абразивостойкого керамического материала, в верхней части фигурного стакана выполнены боковые сквозные радиальные каналы, не менее трех, под углом α=30°…45° к оси вращения фигурного стакана, причем, выше посадочного седла на нижнем переводнике, выполнена коническая фаска под углом β=30°…45° к оси вращения корпуса обратного клапана. Зубчатые модули выполнены с равномерным шагом, а высота зуба h выполнена из соотношения h=(0,5…0,8)⋅D1, где D1 - диаметр шара-клапана.

Обратный клапан установок электроцентробежных насосов для высокодебитных скважин по настоящему техническому решению показан на фигурах (фиг. 1-5):

на фиг. 1 приведена схема обратного клапана для УЗЦН в исходном состоянии;

на фиг. 2 показан разрез сечения обратного клапана на участке радиальных каналов;

на фиг. 3 показана схема обратного клала в рабочем режиме ЭЦН;

на фиг. 4 показана схема фигурного стакана;

на фиг. 5 показан разрез фигурного стакана на участке зубчатого модуля.

Обратный клапан установок электроцентробежных насосов для высокодебитных скважин (фиг. 1…5) включает: цилиндричесий корпус 1, снабженный верхним 2 и нижним 3 присоединительными переводниками, которые оснащены, соответственно, резьбами Р3>Р4, на внутренней поверхности переводника 3 выполнена фаска под углом β=30°…45° (фиг. 3), вызванная необходимостью снижения коэффициента местного гидравлического сопротивления, и снижения турбулизаци потока перекачиваемой газожидкостной смеси, подтвержденная исследованиями [6] (Приложение 3). В верхнем переводнике 2, соосно с корпусом клапана, установлен, с возможностью замены (например, с использованием резьбового соединения), фигурный стакан 4, для охвата и размещения при работающем ЭЦН шара-клапана 5. В нижнем переводнике 3, с возможностью замены, установлено посадочное седло 6 из абразивостойкого материала, например, из стали 95X18, с широким проходным отверстием диаметром (dc), обеспечивающим герметичный контакт с шаром-клапаном 5. На фигурном стакане 4 выполнены радиальные каналы 7, под углом β=30°…45°, способствующим снижению коэффициента местного гидравлического сопротивления и эрозии в радиальных каналах при движении откачиваемой скважиной продукции (газо-жидкостной смеси).

Нижний торец 9 фигурного стакана 4, обращенный в сторону седла 6, снабжен зубчатыми модулями 10 (не менее четырех), выполненных с равномерным шагом S, и высотой h=(0,5...0,8)⋅D1 (вид А на фиг. 5). Для предупреждения абразивного износа и автоколебаний шара-клапана 5 в фигурном стакане 4 предусмотрена его фиксация на фаске 7. Наружный диаметр (Dн) обратного клапана выполнен равным наружному диаметру электроцентробежного насоса, входящего в качестве основного комплектующего узла УЭЦН. Выполнение этого условия необходимо для беспрепятственного спуска в скважину компоновки УЭЦН, которая оснащена кабельной линией, проложенной и закрепленной хомутами от верхней головки погружного электродвигателя (ПЭД) до устьевой арматуры по наружной поверхности ЭЦН и НКТ (на фиг. не показано).

Внутренний диаметр (Dв, фиг. 2) корпуса 1 обратного клапана выполнен с учетом соблюдения прочностных характеристик тела корпуса, обеспечивающего равнопрочность конструкции ОК на всех этапах эксплуатации УЭЦН.

Например, добывающую скважину с внутренним диаметром эксплуатационной колонны (ЭК) 148,3 мм и потенциальным дебитом 500 м3/сут необходимо оборудовать УЭЦНМ6-800. Наружный диаметр ЭЦН по ТУ 26-06-1485-96 выполнен в диаметре - 114 мм. Следовательно, оптимальный наружный диаметр (Dн) ОК должен быть равен 114 мм. А внутренний диаметр Dв корпуса 1 ОК, после проведения прочностных расчетов (не приводятся), может быть выполнен диаметром 98 мм. Для выбранного примера комплектации УЭЦН с ОК используем шар из нитрида кремния (Si3N4) диаметром (D1) 60 мм, обеспечивающего оптималиное распределение площадных каналов для прохода откачиваемой из скважины газожидкостной смеси во внутренней полости корпуса ОК. А диаметр входного отверстия (dc) принимаем, например, из соотношения: dc=Sin60°⋅D1; или, для нашего примера, dc=0,866⋅60≈52 мм.

Для подъема шара-клапана 5 в верхнее положение необходимо, чтобы произведение миделевого сечения (Мсш) шара-кларана 5, связанное с его диаметром D1, и перепада давления ΔР (фиг. 3) были больше массы шара-клапана 5. Если Мсш=π/4⋅(D1)2, а объем шара-клапана V1=4/3⋅π⋅(D1/2)3, тогда Мсш⋅ΔР≥V1⋅ρ; в этом случае ΔР≥V1⋅ρ/Мсш,

где: ρ - плотность материала шара-клапана, (для нитрида кремния ρ=3,21 г/см3;

Для примера: D1-60 мм=6 см; Определим требуемый перепад давления (подпор для шара) ΔР; Для этого определим объем шара V1=4/3⋅3,1415⋅(6/2)3=113,1 см3; Масса шара М1=113,1⋅3,21=363 г. Миделево сечение Мсш=3,1415/4⋅62=28,27 см2. Тогда искомый перепад давления ΔР должен быть не менее ΔР=363/28,27=12,84 г/см2=0,0128 кг/см2=1259 Па ≥ 0,001259 МПа.

Для оценки размера 4-х радиальных каналов, например, квадратного сеченя в фигурном стакане и создания требуемого перепада давления ΔР, воспользуемся приближенной формулой (7.4) из [5]. Она записана, как

где: Q - расход жидкости, л/с; μ=0,9 - коэффициент расхода сопла (канала); f - площадь сечения сопел (каналов), см2; ΔР - перепад давления, 10 МПа.

Для нашего случая из приведенной выше формулы Если принять отбор жидкости из скважины в объеме Q=500 м3/сутки=5,8 л/с и подставив известные значения, определим общую площадь (foб) для четырех радиадьных каналов, получим Определим площадь f квадратного сечения для одного радиального канала. Для этого поделим foб на 4. В итоге получим f=40,7/4=10,17 см2 со стороной квадрата равного 3,2 см. Следовательно, для подъема шара-клапана 5 необходимо обеспечить размер четырех каналов, площадь каждого из них должна быть около 10 см2, что конструктивно, для принятого типоразмера, вполне допустимо.

Обратный клапан установок электроцентробежных насосов для высокодебитных скважин работает следующим следующим образом.

Работа с обратным клапаном начинается с включения его в компоновку УЭЦН в составе спускаемых НКТ путем свинчивания по резьбовым соединениям P1 и Р2 (фиг. 1) с насосно-компрессорными трубами (на фиг. не показано). В процессе спуска УЭЦН на НКТ в скважину, по действующим в нефтяной промышленности регламентам, выполняют периодическую опрессовку НКТ, при проведении которой выявляют не отвечающие требованиям герметичности НКТ и производят их отбраковку.

При не работающем ЭЦН шар-клапан 5 занимает крайнее нижнее положение (фиг. 1) обеспечивая герметизирующий контакт с седлом 6. Это условие выполняться даже и в тех случаях, когда ствол скважины на интервале установки ОК будет иметь горизонтальное положение. В этом случае шар-клапан 4 закроет отверстие в седле 6 гидростатическим давлением (перетоком) в полости насосно-компрессорных труб, расположенных выше ОК, и будет готов к выполнению всех возложенных на него функций.

При работающем ЭЦН шар-клапан 5, за счет движения жидкости и действующего перепада давления ΔР (фиг. 3), вызванного местным гидравлическим сопротивлением в радиальных каналах 7, занимает крайнее верхнее положение, упираясь в коническую фаску 8, которая предусмотрена во внутренней полости фигурного стакана 4. В этом случае движение откачиваемой жидкости (для понимания процесса) показано линиями тока (а).

Приведенные расчеты подтверждают возможность реализации настоящего технологического решения в части того, что шар-клапан 5, в ОК при работающем ЭЦН будет подниматься в полости фигурного стакана 4 и займет неподвижное состояние опираясь на фаску 8, что исключает его износ в потоке газо-жидкостной смеси.

Технический результат связан с достижением кратного по времени увеличения ресурса работы ОК конструкторско-технологическими приемами, с использованием новых технических решений, направленных на: снижение скоростных потоков во внутренней полости клапана; устранение зон турбулизации потока откачиваемой газо-жидкостной (смеси) продукции скважины; расширение площади сечения проходных гидравлических каналов; защиту запорного элемента - шара от прямого абразивного воздействия откачиваемой продукцией; применение абразивостойких материалов.

Предложенные и описанные технические решения в ОК, направленные на увеличение ресурса работы обратного клапана в компоновке внутрискважинного оборудования с УЭЦН для высокодебитных скважин, обладают приведенными в описании признаками новизны, существенными отличительными признаками, позволяющими выполнять поставленную задачу, а его конструктивное исполнение обладает необходимой простотой, обеспечивающей возможность освоения производства и применения в нефтяной промышленности.

Информационные источники:

1. Патент на полезную модель №152084 МПК F16K 15/00.

2. Патент на изобретение RU №2544930 МПК Е21В 34/06. Клапан обратный электроцентробежной установки и способ очистки фильтра на приеме насоса. БИ №8 2015.

3. Патент на изобретение RU №2187709 МПК F04D 15/02 F04D 15/02. Обратный клапан скважинного электроцентробежного насоса. БИ №23 2000.

4. Патент на изобретение RU №2379566 МПК F16K 15/04. Клапан обратный. БИ №2 2010.

5. Гроздев Б.П. и др. Эксплуатация газовых и газоконденсатных месторождений: Справочное пособие. - М.: Недра, 1988. 575 с.

6. Альтшуль А.Д. Гидравлические сопротивления. М: Недра 1982.

Пояснения к чертежам:

1 - корпус клапана;

2 - переводник верхний;

3 - переводник нижний;

4 - стакан фигурный;

5 - шар-клапан;

6 - седло клапана;

7 - канал радиальный;

8 - фаска посадочная;

9 - нижний торец фигурного стакана;

10 - зубчатый модуль короны;

а - линии тока газо-жидкостной продукции скважины;

Dн - наружный диаметр обратного клапана;

Dв - внутренний диаметр обратного клапана;

D1 - диаметр шара-клапана;

dc - диаметр седла шара-клапана;

Р1, Р2 - присоединительные резьбы переводника с НКТ;

Р3, Р4 - присоединительные резьбы корпуса ОК с переводниками;

ΔР - перепад давления на шаре-клапане при работающем ЭЦН;

h - линейный размер по высоте зуба модуля короны;

S - размерный шаг зубов модуля короны;

α - угол наклона входных отверстий окон радиальных каналов;

β - угол наклона торцовой поверхности присоединительного переводника.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 184.
20.06.2016
№217.015.0529

Двенадцатиступенчатая коробка передач

Изобретение относится к коробкам передач. 12-ступенчатая коробка передач содержит картер с промежуточной стенкой, с размещенными в нем входным, выходным и промежуточным валами. Входной и выходной валы установлены соосно, а промежуточный вал установлен параллельно этим валам. Наконечник...
Тип: Изобретение
Номер охранного документа: 0002587281
Дата охранного документа: 20.06.2016
10.06.2016
№216.015.4640

Способ заканчивания нефтяной малодебитной скважины

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу заканчивания нефтяных малодебитных скважин с открытым забоем. Технический результат - сохранение устойчивости стенок ствола скважины и повышение дебитов нефти малодебитной скважины. По способу осуществляют бурение...
Тип: Изобретение
Номер охранного документа: 0002586337
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4d20

Зубная нить с растительным пигментом

Изобретение относится к области медицинской техники и предназначено для использования в стоматологии, для ежедневного ухода за зубами, для удаления остатков пищи из межзубного пространства и зубного налета, для профилактики гингивита. Зубная нить состоит из крученой или некрученой...
Тип: Изобретение
Номер охранного документа: 0002595003
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d97

Погружное фильтрокомпенсирующее устройство

Изобретение относится к области электротехники и внутрискважинному оборудованию, а именно может быть использовано для компенсаций реактивной мощности погружных электродвигателей установок электроцентробежных насосов. Сущность изобретения: погружное фильтрокомпенсирующее устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002595256
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4df0

Способ анодирования алюминия и его сплавов

Изобретение относится к области гальванотехники и может быть использовано для создания износостойких покрытий на трущихся поверхностях деталей машин в машиностроительной, металлообрабатывающей, станкостроительной и других отраслях промышленности. Способ включает анодирование на постоянном токе...
Тип: Изобретение
Номер охранного документа: 0002595167
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e08

Балансирная диагональная подвеска

Изобретение относится к подвеске колес автомобилей, имеющих три и более моста. Балансирная подвеска содержит на каждое колесо по два продольных направляющих рычага с опорами качания, расположенными одна на опорном диске колеса, другая - между колесами рядом расположенных мостов автомобиля....
Тип: Изобретение
Номер охранного документа: 0002595208
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4f34

Система обогрева трубопроводов

Изобретение относится к технике нагрева с помощью электромагнитных микро- и радиоволн, а именно может быть использовано для нагрева трубопроводов в различных отраслях народного хозяйства и техники, а также для защиты от замерзания продуктов, протекающих внутри трубопроводов. Система обогрева...
Тип: Изобретение
Номер охранного документа: 0002595257
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4f78

Несоосная двухвальная шестиступенчатая коробка передач с двумя сцеплениями

Изобретение относится к несоосным коробкам передач с двумя сцеплениями. На концах первичного вала коробки передач закреплены кожухи сцеплений с ведущими дисками. Ведомые диски сцеплений установлены на шлицах трубчатых валов отдельной шестерни и блока из четырех шестерен первичного вала. На...
Тип: Изобретение
Номер охранного документа: 0002595203
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.5039

Устройство изменения радиуса кривошипа кривошипно-шатунного механизма

Предлагаемое устройство относится к машиностроению, в частности к поршневым машинам. Кривошипно-шатунный механизм, содержащий коленчатый вал, состоящий из коренных и шатунных шеек, соединенных щеками кривошипов, отличается тем, что щеки кривошипов имеют направляющие пазы, в которых установлены...
Тип: Изобретение
Номер охранного документа: 0002595993
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50ab

Механобиологический способ диагностики материалов и конструкций

Изобретение относится к области неразрушающего контроля материалов и изделий по условиям прочности и предназначено для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня напряженности в исследуемых зонах конструкции. Механобиологический способ исследования...
Тип: Изобретение
Номер охранного документа: 0002595876
Дата охранного документа: 27.08.2016
Показаны записи 1-10 из 14.
10.11.2014
№216.013.0442

Способ оптимизации процесса добычи нефти

Изобретение относится к нефтяной и газовой промышленности и используется для оптимизации процесса добычи нефти с помощью штанговых глубинных насосов. Техническим результатом является вывод скважины в автоматическом режиме на максимальный объем добычи нефти. Способ оптимизации процесса добычи...
Тип: Изобретение
Номер охранного документа: 0002532488
Дата охранного документа: 10.11.2014
12.01.2017
№217.015.5b8e

Вентиль для отбора проб из трубопровода

Изобретение относится к нефтяной промышленности и предназначено для отбора проб из манифольда арматуры устья нефтедобывающей скважины, а также при отборе проб жидкости из трубопровода. Вентиль для отбора проб из трубопровода содержит пробоотборный патрубок с входным отверстием для забора пробы...
Тип: Изобретение
Номер охранного документа: 0002589547
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8388

Пакер с кабельным вводом

Изобретение относится к пакеру с кабельным вводом. Техническим результатом является повышение надежности и функциональных способностей пакера. Пакер с кабельным вводом, содержащий ствол, установленные на нем герметизатор, уплотнительный узел, кожух, входное отверстие с проходящим через него...
Тип: Изобретение
Номер охранного документа: 0002601710
Дата охранного документа: 10.11.2016
09.06.2018
№218.016.5bc9

Пробка мостовая извлекаемая

Изобретение относится к мостовым пробкам извлекаемым. Техническим результатом является создание эффекта самоуплотнения мостовой пробки. Мостовая пробка извлекаемая включает ствол, уплотнительный элемент, фиксатор положения уплотнительного элемента, основной и дополнительный конусы, с которыми...
Тип: Изобретение
Номер охранного документа: 0002655867
Дата охранного документа: 29.05.2018
24.07.2018
№218.016.73ca

Способ предупреждения отложения асфальто-смолистых и парафиновых компонентов нефти в насосно-компрессорных трубах в скважине и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности и может быть использована при добыче нефти с большим содержанием асфальто-смолистых и парафиновых компонентов нефти (АСПО). При фонтанном способе добычи или с помощью установок электроцентробежного насоса (УЭЦН) газожидкостный поток (ГЖП)...
Тип: Изобретение
Номер охранного документа: 0002661951
Дата охранного документа: 23.07.2018
19.09.2018
№218.016.8899

Способ добычи нефти с повышенным содержанием газа из скважин и устройство для его осуществления

Изобретение относится к нефтяной промышленности и может быть использовано при добыче нефти с большим содержанием газа. Технический результат – обеспечение возможности вывода малодебитных скважин с большим содержанием газа на длительный стационарный режим работы скважин с минимальными рисками...
Тип: Изобретение
Номер охранного документа: 0002667182
Дата охранного документа: 17.09.2018
26.01.2019
№219.016.b491

Клапан для ведущей бурильной трубы

Изобретение относится к нефтяной промышленности и может быть применено для устранения розлива бурового раствора на рабочую площадку при наращивании бурильных труб. Клапан включает цилиндрический корпус, с резьбовыми соединениями ниппельного и муфтового исполнения, с размещенными во внутренней...
Тип: Изобретение
Номер охранного документа: 0002678249
Дата охранного документа: 24.01.2019
21.03.2019
№219.016.eb0d

Способ проведения поинтервального гидроразрыва пласта в скважине и устройство для его осуществления

Изобретение относится к нефтяной промышленности и может быть применено для проведения поинтервального многостадийного гидроразрыва пласта (МГРП) в скважинах преимущественно с горизонтальным окончанием или боковых стволах реанимируемых скважин. Способ заключается в том, что определяют интервалы...
Тип: Изобретение
Номер охранного документа: 0002682391
Дата охранного документа: 19.03.2019
17.04.2019
№219.017.1544

Разбуриваемый пакер

Изобретение относится к нефтедобывающей промышленности и предназначено для отсечения продуктивного пласта в скважинах с низким пластовым давлением. Позволяет повысить надежность работы устройства, снизить загрязнения в призабойной зоне пласта, упростить технологические работы, в том числе и по...
Тип: Изобретение
Номер охранного документа: 0002278242
Дата охранного документа: 20.06.2006
17.04.2019
№219.017.1563

Посадочное устройство

Изобретение относится к технике для добычи нефти и может быть использовано для установки - посадки гидравлическим способом пакерно-якорного оборудования в нефтяную скважину. Обеспечивает высокую надежность в работе, производство ремонтно-изоляционных и других технологических работ в скважине, в...
Тип: Изобретение
Номер охранного документа: 0002296852
Дата охранного документа: 10.04.2007
+ добавить свой РИД