×
16.05.2023
223.018.6119

Результат интеллектуальной деятельности: Способ поддержания оптимального температурного режима работы солнечного модуля и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к гелиотехнике и может быть использовано для электрификации инфраструктуры сельского хозяйства. Охлаждение фотоэлектрических элементов до оптимальной температуры осуществляют антигравитационным теплообменным устройством с капиллярным телом, конденсаторную часть которого погружают в нижний горизонт грунта на глубину, обеспечивающую охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов в пределах 20-30°С, а верхнюю часть теплообменного устройства с испарителем подсоединяют к подложке солнечного модуля и охлаждают фотоэлектрические элементы за счет переноса тепла паром из зоны испарения вниз в зону конденсации устройства, где теплоноситель конденсируют за счет отдачи скрытой теплоты парообразования нижнему горизонту грунта, откуда в жидком виде по капиллярному телу теплоноситель поднимается наверх в испаритель, процесс регенерации теплоносителя повторяется циклически, при этом параметры теплоносителя подбирают таким образом, чтобы температура кипения совпадала с нижней границей диапазона оптимальных для работы фотоэлектрических элементов температур, причем глубину закладки конденсаторной части теплообменного устройства выбирают таким образом, чтобы температура грунта обеспечивала охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов. Изобретение обеспечивает возможность поддерживать оптимальную температуру работы фотоэлектрических элементов и избежать искажения электрических характеристик под воздействием экстремальных температур охлаждением фотоэлектрического приемника солнечного модуля путем теплообмена между рамой (подложкой) фотоэлектрического элемента и нижним горизонтом грунта за счет разницы температур по теплообменному устройству с испарительно-конденсационным циклом. 2 н.п. ф-лы, 1 ил.

Изобретение относится к гелиотехнике, к способам поддержания оптимального температурного режима работы фотоэлектрических элементов солнечного модуля в условиях экстремальных температур и может быть использовано для электрификации инфраструктуры сельского хозяйства.

Известно, что только 6 – 20 % падающего на фотоэлемент солнечного излучения используется для получения электричества. Остальная энергия, в большей степени, идет на нагрев фотоэлемента, происходит значительное увеличение температуры его поверхности, что, в свою очередь, негативно сказывается на его работе (Асанов М.М., Бекиров Э.А., Воскресенская С.Н. Снижение влияния нагрева поверхности фотоэлемента на эффективность его работы // Строительство и техногенная безопасность. 2014. №51. С.92-96).

Стандартные условия испытания (СУИ) (STC — Standard Test Conditions) для солнечных модулей производительностью 1 кВт/м2 проводятся для температуры их эксплуатации 25 °C (Лист спецификации данных Delta Battery. URL: https://eco50.ru/solnechnye-sistemy/solnechnyebatarei/solnechnaya-batareya-delta-sm-100-12m-100-vatt-12v-mono).

В яркий солнечный день элементы нагреваются до 60-70оС теряя 0,07-0,09В каждый. Это и является основной причиной снижения КПД солнечных элементов, приводя к падению напряжения, генерируемого модулем (http://solarmir.ru/stati/avtonomnaya-sistema/fotoelektricheskie-moduli-fem). Так, у кремниевых солнечных элементов номинальная мощность падает с каждым градусом превышения номинальной температуры на 0,43-0,47%, солнечные элементы из теллурида кадмия теряют всего 0,25% (Норкин А. Типы и особенности солнечных батарей для индивидуальной энергетической установки //FacePla.net [Электронный ресурс] – Режим доступа: http://www.facepla.net/the-news/energy-news-mnu/2158-home-solar.html).

Известен солнечный фотоэлектрический модуль, с устройством охлаждения выполненный в виде цилиндра из скоммутированных высоковольтных ФЭП (патент РФ №2505755, МПК F24 J2/10, G02 B5/10, опубл. 27.01.2014).

Недостатком данного солнечного модуля является сильный нагрев фотоэлементов при прохождении через них концентрированного солнечного излучения.

Известна конструкция маломощного теплофотоэлектрического приемника (ТФЭП), основные компоненты которой имеют протяженную цилиндрическую форму и представляют собой концентрически расположенные эмиттер, набор фотоэлементов и радиатор с жидкостной либо воздушной системой охлаждения фотоэлементов (патент США №6489553, МПК, опубл. 03.12.2002). Эмиттер такого ТФЭП может быть выполнен из тугоплавкого металла типа вольфрама и иметь антиотражающее покрытие. Промежуток между эмиттером и фотоэлементами может быть заполнен инертным газом для повышения теплового сопротивления и обеспечения долговременной высокотемпературной (без окисления) работы материала эмиттера и антиотражающего покрытия.

Недостатком такого ТФЭП является низкая эффективность охлаждения фотоэлементов (при диаметре окружности, на которой располагаются фотоэлементы, сравнимой с диаметром эмиттера).

Известен фотоэлектрический модуль включающий множество оптических концентраторов, фокусирующих солнечное излучение на фотоприемные площадки солнечных фотоэлементов и устанавливаемый на площадке, имеющей оребрение для рассеяния тепла (патент US 6717045, МПК H01L 31/052, опубликован 06.04.2004).

Недостатками известного фотоэлектрического модуля являются технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, соответственно, также высокая стоимость конструкции.

Известен способ направления подогретого теплоносителя вниз, то есть в сторону противоположную к направлению естественной конвекции по обратному термосифону, работа которого основана на использовании повышенного давления насыщенного водяного пара в теплой ветви циркуляционного контура по сравнению с давлением насыщенного пара в холодной ветви, это давление может преодолеть силы естественной конвекции и вытеснить теплый теплоноситель по теплой ветви вниз к охладителю, через охладитель и далее уже холодный теплоноситель по холодной ветви к верхней части циркуляционного контура (патент UA 15361 А, МПК F28 D 25/00,опубл. 30.06.1997).

Наиболее близким по технической сущности к предлагаемому изобретению является гибридный солнечный коллектор, где фотоэлектрические элементы охлаждаются активной системой отвода теплоты через медные трубки, встроенные в тыльную часть солнечной панели и используют отведенную теплоту для нагрева воды в системе горячего водоснабжения в здании (Sevela P. Energy Management in DTU Solar Decathlon house. Technical University of Denmark. 2012. http://zvt.abok.ru/articles/106/Gibridnii_solnechnii_kollektor). Фотоэлектрические преобразователи уложены в этиленвинилацетатную пленку, гидравлическая часть – в комбинацию из поливинилфторидной и этиленвинилацетатной пленок. Тыльная сторона панели обклеена теплоизоляцией AFarmaflex. Тепловая энергия утилизируется в баке горячего водоснабжения, за счет чего охлаждаются фотоэлектрические преобразователи и повышается КПД фотоэлектрического модуля. При невозможности дальнейшей утилизации тепловой энергии баком горячего водоснабжения охлаждение осуществлялось с помощью воды от вертикального грунтового теплообменника глубиной 120 м. В контур системы гибридного солнечного коллектора встроен дренажный бак на 100 л, заполненный на ¾ воздухом. Все трубопроводы выше дренажного бака выполняют под уклоном к нему как минимум 2 %. В идеальных условиях вода из гибридного солнечного коллектора самотеком поступает в дренажный бак, откуда попадает в бак горячего водоснабжения. Насос используется только для подъема воды в гибридный солнечный коллектор.

Недостатками известного технического решения являются сложность и материалоемкость конструкции, необходимость энергозатрат для работы насоса.

Задачей предлагаемого изобретения является обеспечение оптимального температурного режима работы фотоэлектрических элементов в солнечном модуле с применением температуры нижних горизонтов грунта, повышения КПД солнечного модуля и снижения стоимости вырабатываемой электроэнергии в регионах с жарким климатом.

В результате использования предлагаемого изобретения появляется возможность поддерживать оптимальную температуру работы фотоэлектрических элементов и избежать искажения электрических характеристик под воздействием экстремальных температур охлаждением фотоэлектрического приемника солнечного модуля путем теплообмена между рамой (подложкой) фотоэлектрических элементов и нижним горизонтом грунта за счет разницы температур по антигравитационному теплообменному устройству с капиллярным телом с испарительно-конденсационным циклом.

Вышеуказанный технический результат достигается тем, что в предлагаемом способе поддержания оптимального температурного режима работы солнечного модуля, включающем охлаждение фотоэлектрических элементов солнечного модуля отведением теплоты с помощью системы труб с теплоносителем, согласно изобретению, охлаждение фотоэлектрических элементов до оптимальной температуры осуществляют антигравитационным теплообменным устройством с капиллярным телом, конденсаторную часть которого погружают в нижний горизонт грунта на глубину, обеспечивающую охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов в пределах 20-30°С, а верхнюю часть теплообменного устройства с испарителем подсоединяют к подложке солнечного модуля и охлаждают фотоэлектрические элементы за счет переноса тепла паром из зоны испарения вниз в зону конденсации устройства, где теплоноситель конденсируют за счет отдачи скрытой теплоты парообразования нижнему горизонту грунта, откуда в жидком виде по капиллярному телу теплоноситель поднимается наверх в испаритель, процесс регенерации теплоносителя повторяется циклически, при этом параметры теплоносителя подбирают таким образом, чтобы температура кипения совпадала с нижней границей диапазона оптимальных для работы фотоэлектрических элементов температур, причем глубину закладки конденсаторной части теплообменного устройства выбирают таким образом, чтобы температура грунта обеспечивала охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов.

Также технический результат достигается тем, что предлагаемое устройство для реализации способа поддержания оптимального температурного режима работы солнечного модуля, содержащее солнечный модуль, включающий в себя фотоэлектрические элементы, согласно изобретению, снабжено антигравитационным теплообменным устройством в виде труб с капиллярным телом, при этом верхнюю часть теплообменного устройства с испарителем подсоединяют к подложке солнечного модуля, а конденсаторную часть теплообменного устройства погружают в нижний горизонт грунта на глубину с температурой грунта, обеспечивающую охлаждение теплоносителя до оптимальной температуры фотоэлектрического элемента.

Сущность предлагаемого изобретения поясняется чертежом, на котором представлена общая схема устройства для реализации способа поддержания оптимального температурного режима работы солнечного модуля.

Устройство для реализации способа поддержания оптимального температурного режима работы солнечного модуля содержит солнечный модуль 1, состоящий из прозрачной пластины 2, подложки (теплопроводного листа) 3, фотоэлектрических элементов 4, установленных между пластиной 2 и подложкой 3, заключенными в раму 5; антигравитационное теплообменное устройство в виде труб 6 с капиллярным телом 10, верхняя часть которого является испарителем 7 и соединена с подложкой 3, а нижняя часть является конденсатором 8 и погружается в нижний горизонт грунта 9. Теплоноситель в конденсированном виде поднимается вверх в испаритель 7 по капиллярному телу 10 Теплоноситель вскипает до температуры кипения, испаряясь движется в конденсаторную часть, где конденсируется и по капиллярному телу 10 поднимается наверх в испаритель 7.

Для поддержания оптимальных температурных режимов работы солнечных модулей использующих разницу температур грунта возможно использовать теплоноситель с температурой кипения совпадающей с системами передачи тепловой энергии от солнечных элементов в нижние горизонты грунта на глубине, равную от 30 до 50 % от глубины годового прогревания грунта.

Работает устройство для реализации способа поддержания оптимального температурного режима работы солнечного модуля следующим образом.

В почву на глубину, для обеспечения оптимального температурного режима работы фотоэлемента солнечного модуля, зарывают антигравитационное теплообменное устройство с движением теплоносителя в направлении обратном по отношению к естественной конвекции. Конденсатор теплообменного устройства 8 погружают в нижний горизонт грунта 9 на глубину, обеспечивающую оптимальную температуру фотоэлемента солнечного модуля. Солнечные лучи нагревают фотоэлектрические элементы 4 и подложку 3 солнечного модуля 1, что вызывает кипение теплоносителя в испарителе 7 теплообменного контура 6, присоединенного к подложке 3 солнечного модуля 1. Под воздействием возникающей при этом разности давлений пар направляется от испарителя 7 вниз к конденсатору 8, где он охлаждается, отдавая скрытую теплоту парообразования нижнему горизонту грунта 9 с температурой, лежащей в диапазоне оптимальных температур для работы фотоэлектрического преобразователя 4. Теплоноситель в жидкой фазе по капиллярному телу 10 из конденсаторной части 8 возвращается в зону испарительной части 7. Цикл повторяется. При этом параметры теплоносителя подбираются таким образом, чтобы температура кипения совпадала с нижней границей диапазона оптимальных для работы фотоэлектрического элемента температур. Причем глубину закладки конденсаторной части 8 антигравитационного теплообменного устройства 6 выбирают таким образом, чтобы температура грунта обеспечивала охлаждение теплоносителя до температуры оптимальной для работы фотоэлектрических элементов 4. В процессе реализации способа фотоэлектрический модуль 1 охлаждается до оптимальной температуры 20-25ºС. Это приводит к повышению КПД солнечного модуля.

Пример.

В местности с жарким климатом для обеспечения оптимального температурного режима работы фотоэлектрических элементов солнечного модуля в почву на глубину 4 м зарывают антигравитационное теплообменное устройство с обратной конвекцией. Конденсатор теплообменного устройства погружают в нижний горизонт грунта на глубину, обеспечивающую оптимальную температуру фотоэлектрического элемента солнечного модуля. Солнечные лучи нагревают фотоэлектрические элементы и медную подложку солнечного модуля, что вызывает кипение фреона в испарителе теплообменного контура, присоединенного к медной подложке солнечного модуля. Под воздействием возникающей при этом разности давлений пар направляется от испарителя вниз к конденсатору, где он охлаждается, отдавая скрытую теплоту парообразования нижнему горизонту грунта с температурой, лежащей в диапазоне оптимальных температур для работы фотоэлектрических элементов 25 оС. Фреон в жидкой фазе по капиллярному телу из зоны конденсатора возвращается в зону испарителя. Цикл повторяется. В качестве теплоносителя используют фреон R601a.

В процессе реализации предлагаемого способа фотоэлектрические элементы охлаждают до оптимальной температуры 25ºС, что приводит к повышению КПД солнечного модуля на 30 % .

Источник поступления информации: Роспатент

Показаны записи 91-100 из 272.
04.04.2018
№218.016.31e7

Устройство и способ усиления электрических сигналов

Изобретение относится к электротехнике. Устройство содержит катушку индуктивности, соединенную последовательно с емкостью, с образованием резонансного контура и прибор для периодического изменения параметров резонансного контура. Резонансный контур соединен последовательно с высоковольтным...
Тип: Изобретение
Номер охранного документа: 0002645222
Дата охранного документа: 19.02.2018
10.05.2018
№218.016.3d41

Устройство для испытания топливных насосов высокого давления

Изобретение относится к устройствам для испытания топливной аппаратуры дизельных двигателей внутреннего сгорания. Предложено устройство для испытания топливного насоса высокого давления (ТНВД), содержащее раму 1 со смонтированной на ней плитой 2 для установки ТНВД, электропривод 3, форсунку 7,...
Тип: Изобретение
Номер охранного документа: 0002648175
Дата охранного документа: 22.03.2018
09.06.2018
№218.016.5eca

Способ определения угла начала нагнетания топлива секцией топливного насоса высокого давления

Изобретение относится к области испытания и регулировки топливных систем дизелей. Изобретение направлено на автоматизацию процесса измерений и повышение точности определения угла начала нагнетания топлива секцией топливного насоса высокого давления (ТНВД). Предложенный способ определения угла...
Тип: Изобретение
Номер охранного документа: 0002656529
Дата охранного документа: 05.06.2018
27.12.2018
№218.016.abfd

Кормораздатчик

Изобретение относится к сельскому хозяйству и может применяться на животноводческих фермах для раздачи кормов животным. Кормораздатчик включает бункер для корма и примыкающий к нему выгрузной механизм в виде вращающейся фронтальной крыльчатки, заключенной в корпус, в стенках которого имеются...
Тип: Изобретение
Номер охранного документа: 0002675993
Дата охранного документа: 26.12.2018
27.12.2018
№218.016.ac48

Реактор баротермической обработки комбикормов в псевдоожиженном слое

Изобретение относится к оборудованию для баротермической обработки рассыпных комбикормов и может быть использовано в хозяйствах на животноводческих фермах, перерабатывающих сельскохозяйственных предприятиях и комбикормовых цехах. Реактор включает горизонтальный цилиндрический корпус с...
Тип: Изобретение
Номер охранного документа: 0002676132
Дата охранного документа: 26.12.2018
27.12.2018
№218.016.ac4f

Способ получения искусственного снега для сельского хозяйства

Изобретение относится к способу получения искусственного снега для очистки воздуха и создания оптимального микроклимата в животноводческих и птицеводческих помещениях, пылеподавления в комбикормовых цехах, заводах, зерноперерабатывающих предприятиях, для образования искусственного снежного...
Тип: Изобретение
Номер охранного документа: 0002676134
Дата охранного документа: 26.12.2018
27.12.2018
№218.016.ac52

Устройство для дозированной раздачи комбикорма

Изобретение относится к области сельскохозяйственных машин. Устройство содержит замкнутый кормопровод с гибким кормонесущим элементом с поворотными роликами и приводом, приемный бункер комбикорма, дозаторы комбикорма с приводом. Привод кормонесущего элемента выполнен в виде фланцевого...
Тип: Изобретение
Номер охранного документа: 0002676131
Дата охранного документа: 26.12.2018
27.12.2018
№218.016.ac5f

Устройство по интенсификации биотермического процесса переработки органической массы с применением твердой фракции навоза

Изобретение относится к сельскому хозяйству и может быть использовано при получении удобрений из отходов сельскохозяйственного производства. Устройство содержит цилиндрический барабан с теплоизолирующим покрытием, опирающимся своим корпусом на опорные катки. Устройство состоит из трех частей:...
Тип: Изобретение
Номер охранного документа: 0002676133
Дата охранного документа: 26.12.2018
22.01.2019
№219.016.b28a

Кормораздатчик

Изобретение относится к сельскохозяйственным машинам, в частности к раздатчикам индивидуальных доз комбикормов коровам. Кормораздатчик содержит размещенный на транспортном средстве бункер в виде цилиндрической емкости с питателем в виде лопастного колеса с приводом и разгрузочным отверстием в...
Тип: Изобретение
Номер охранного документа: 0002677795
Дата охранного документа: 21.01.2019
22.01.2019
№219.016.b293

Установка фракционного измельчения и производства смесей концентрированных кормов

Изобретение относится к сельскому хозяйству, в частности к устройствам для измельчения и одновременного смешивания ингредиентов фуражного зерна с минеральными, витаминными и лечебными премиксами, и может быть использовано при приготовлении комбикормов. Установка включает узлы дозирования,...
Тип: Изобретение
Номер охранного документа: 0002677798
Дата охранного документа: 21.01.2019
Показаны записи 91-100 из 131.
16.03.2019
№219.016.e1d2

Комплекс беспилотных летательных средств на базе аэростатического летательного аппарата

Изобретение относится к к устройствам, обеспечивающим процесс проведения операции химической защиты. Комплекс беспилотных летательных средств на базе аэростатического летательного аппарата включает каркас, шасси, заполненные газом легче воздуха мягкие баллоны, силовую установку с турбовинтовыми...
Тип: Изобретение
Номер охранного документа: 0002681966
Дата охранного документа: 14.03.2019
30.03.2019
№219.016.f977

Вихревая установка конденсации влаги из атмосферного воздуха

Изобретение относится к области получения пресной воды из атмосферного воздуха. Вихревая установка конденсации влаги из атмосферного воздуха предусматривает подачу атмосферного воздуха в генераторы энергии сжатого воздуха, подохлаждение потока сжатого и сконцентрированного потока воздуха с...
Тип: Изобретение
Номер охранного документа: 0002683552
Дата охранного документа: 28.03.2019
27.04.2019
№219.017.3ce3

Способ и установка противопожарного водоснабжения для аридных регионов

Изобретение относится к области водоснабжения, а именно к способам добывания или сбора питьевой или водопроводной воды, а также к области противопожарных средств, и может быть применено для пожаротушения в засушливых регионах, при дефиците водоисточников. Способ противопожарного водоснабжения...
Тип: Изобретение
Номер охранного документа: 0002686195
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3cf0

Установка получения пресной воды из атмосферного воздуха морского базирования

Изобретение относится к установкам получения пресной воды из атмосферного воздуха с использованием возобновляемых источников энергии. Установка получения пресной воды из атмосферного воздуха морского базирования снабжена тепловыми трубами с капиллярной структурой и хладагентом внутри них, при...
Тип: Изобретение
Номер охранного документа: 0002686224
Дата охранного документа: 24.04.2019
19.06.2019
№219.017.8489

Устройство для соединения и запирания дверных створок, расположенных одна за другой (варианты)

Устройство содержит замок, предназначенный для установки на наружной двери, и ответную часть замка, предназначенную для установки на внутренней двери. Ответная часть замка имеет корпус, соединенный с опорной пластиной, расположенной на дверном полотне внутренней двери со стороны охраняемого...
Тип: Изобретение
Номер охранного документа: 0002289008
Дата охранного документа: 10.12.2006
13.07.2019
№219.017.b38c

Установка экстракции воды из воздуха на базе солнечного модуля с параболоторическим концентратором и двигателем стирлинга

Изобретение относится к устройствам получения пресной воды из атмосферного воздуха с использованием возобновляемых источников энергии. Установка содержит корпус с окнами ввода и вывода воздуха, с размещенными внутри корпуса тепловым контуром с курсирующим хладагентом, конденсатором и...
Тип: Изобретение
Номер охранного документа: 0002694308
Дата охранного документа: 11.07.2019
16.08.2019
№219.017.c004

Сеялка для посева зерновых культур колосьями

Изобретение относится к сельскохозяйственному машиностроению. Сеялка для посева зерновых культур включает высевающие секции, в каждой из которых смонтировано ленточно-кассетное высевающее устройство. Последнее имеет в составе кассетную катушку с намотанной на нее лентой для колосьев,...
Тип: Изобретение
Номер охранного документа: 0002697498
Дата охранного документа: 14.08.2019
27.08.2019
№219.017.c3d7

Способ механизации и автоматизации сбора урожая на базе индивидуальных мобильных экзоскелетов

Изобретение относится к области сельского хозяйства. Способ состоит в отборе плодов по визуально различимым критериям, таким как цвет, размер и качество, сборе урожая в мешки, выгрузке плодов из мешков по мере заполнения в корзины для последующей транспортировки в упаковочный или обрабатывающий...
Тип: Изобретение
Номер охранного документа: 0002698260
Дата охранного документа: 23.08.2019
05.09.2019
№219.017.c722

Установка для получения электрической энергии из сине-зеленых водорослей

Изобретение относится к биоэнергетике и может быть использовано для извлечения электрической энергии из сине-зеленых водорослей. Установка для получения электрической энергии из сине-зеленых водорослей включает трубопровод 3, биовегетарий, источник света 23, гидротаранный механизм 1 и...
Тип: Изобретение
Номер охранного документа: 0002699123
Дата охранного документа: 03.09.2019
02.10.2019
№219.017.caee

Роботизированный гусеничный опрыскиватель для обработки сельскохозяйственных культур

Изобретение относится к сельскохозяйственному машиностроению, а именно к транспортно-технологическим средствам с оборудованием для химической обработки сельскохозяйственных культур. Роботизированный гусеничный опрыскиватель включает систему опрыскивания с емкостью для рабочего раствора,...
Тип: Изобретение
Номер охранного документа: 0002701663
Дата охранного документа: 30.09.2019
+ добавить свой РИД