×
15.05.2023
223.018.5b39

Результат интеллектуальной деятельности: Оптически прозрачный люминесцентный наноструктурный керамический материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается оптически прозрачный люминесцентный наноструктурный керамический материал на основе матрицы из алюмомагниевой шпинели, содержащей оксид алюминия, отличающийся тем, что матрица из алюмомагниевой шпинели дополнительно содержит углерод в виде графеновых пластин размером 3-10 нм при следующем массовом соотношении компонентов, %: алюмомагниевая шпинель (MgAlO) 99,3-99,49; оксид алюминия (AlO) 0,4-0,5; углерод (С) 0,01-0,3. Алюмомагниевая шпинель и оксид алюминия находятся в наноструктурном состоянии с величиной области когерентного рассеяния 5-40 нм. Материал обладает перестраиваемым фотолюминесцентным диапазоном, что позволит использовать его в LED приборах, плазменных дисплейных панелях, перестраиваемых детекторах УФ-видимого спектрального диапазона, световых матричных индикаторах. 5 ил., 1 табл., 2 пр.

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAl2O4) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники.

Известен прозрачный керамический материал на основе наноструктурированного иттриево-алюминиевого граната, состоящий из YAG и Al2O3 с размерами зерен как кристаллической фазы YAG, так и кристаллической фазы Al2O3 менее 100 нм, при этом кристаллическая фаза YAG и кристаллическая фаза оксида алюминия образуют нанокомпозитную структуру (Appl. WO2019100622; МПК C03C 10/00, C04B 35/44; 2019 год).

Однако, недостатком известной наноструктурной керамики на основе алюмоиттриевого граната (ИАГ) является небольшая ширина запрещенной зоны (6,5 эВ), которая обусловливает меньшее окно оптической прозрачности ИАГ и, следовательно, обеспечивает свечение в узком спектральном диапазоне.

Известен высоколегированный ионами эрбия прозрачный керамический материал со структурой иттрий-алюминиевого граната (Еr:ИАГ) для использования в качестве лазерного материала в медицине и оптической связи. Материал имеет состав ErnY(3-n)Al5O12, где n - количество легирующего иона и n=0,3-1,8 (патент RU 2697561; МПК C04B 28/00, C04B 29/28, C04B 35/44, C04B 35/645, C04B 35/626, H01s 3/16, G02B 1/02; 2019 год).

Однако, недостатками известного материала, на основе легированного редкими землями алюмоиттриевого граната (АИГ) являются высокая стоимость редкоземельных ионов. Примесные ионы позволяют формировать фотолюминесцентный сигнал в АИГ, однако положение фотолюминесцентных полос определяется схемой энергетических расщеплений, следовательно, комбинации матрицы АИГ и примесных центров в известном материале позволяют удовлетворить потребность в люминофорах, светящих в узком спектральном диапазоне. Комбинация нескольких типов ионов в матрице АИГ ведет к расширению диапазона использования люминофора, однако при этом возникает межионное взаимодействие, обусловливающее процессы тушения фотолюминесцентного сигнала за счет эффектов адсорбции энергии.

Известна наноразмерная керамика состава MgAl2O4:Mn, обладающая селективным набором фотолюминесцентных полос с максимумами при 440 нм, 520 нм, 650 нм и 710 нм. Указанные переходы обусловлены наличием собственных центров свечения шпинели, а также примесных марганцевых дефектов, формирующих Mn2+, Mn3+ и Mn4+ центров свечения, характеризующихся миллисекундной кинетикой свечения. Известный материал формирует фотолюминесцентный сигнал в пиках 440 нм, 520 нм, 650 нм и 710 нм с полной шириной на половине высоты (FWHM) около 50 нм, а фотолюминесцентный сигнал снимается с поверхности керамического изделия, либо с поверхности частиц порошка, в случае измельчения керамического изделия (Khaidukov N. et al. Time-and Temperature-Dependent Luminescence of Manganese Ions in Ceramic Magnesium Aluminum Spinels //Materials. – 2021. – Т. 14. – №. 2. – С. 420).

Однако, в известном материале имеется явное отсутствие фотолюминесцентного сигнала в диапазоне ближнего ультрафиолета (УФ), кроме того отсутствует перестройка максимума фотолюминесцентного сигнала. Вместе с тем, микроразмерное состояние кристаллитов приводит к отсутствию оптической прозрачности, что обеспечивает слабую эффективность фотолюминесцентного выхода, обусловленную поверхностным свечением микрозерен.

Наиболее близкой по технической сущности к заявляемому является флуоресцентная прозрачная керамика на основе алюмомагниевой шпинели, легированной хромом. Известная керамика представляет собой композит состава MgAl2O4:Cr3+/Al2O3 с компактными и закрытыми газовыми порами. В известной керамике на основе алюмомагниевой шпинели, легированной хромом, присутствует узкая полоса фотолюминесценции, с пиком при 685 нм (патент CN 107602109; МПК C04 B35/443, C04B 35/645, C04B 35/626; 2021 год).

Недостатками алюмомагниевой шпинели, легированной ионами хрома, являются отсутствие перестраиваемого фотолюминесцентного диапазона, что обусловлено, во-первых, локализацией ионов хрома в искаженных октаэдрах, с локальной симметрией D3d, в результате чего часть энергетических уровней ионов Cr3+ претерпевает расщепление (в особенности 4F уровень), во-вторых, рост нестехиометрии в алюмомагниевой шпинели в результате избытка оксида алюминия на стадии твердофазного синтеза ведет к формированию дополнительных анти-сайт дефектов, то есть локализации катионов магния в октаэдрических узлах алюминия и катионов алюминия в тетраэдрических узлах магния, в результате, положение полос возбуждения красной фотолюминесценции в ионах хрома претерпевает смещение в сторону больших длин волн с одновременным увеличением вероятности безызлучательных переходов, то есть снижением квантового выхода.

Таким образом, перед авторами стояла задача разработать состав оптически прозрачного люминесцентного наноструктурного керамического материала, обладающего перестраиваемым фотолюминесцентным диапазоном, что позволит расширить диапазон использования таких керамик, например, в качестве LED устройств.

Поставленная задача решена в предлагаемом составе оптически прозрачного люминесцентного наноструктурного керамического материала на основе матрицы из алюмомагниевой шпинели, содержащей оксид алюминия, в котором матрица из алюмомагниевой шпинели дополнительно содержит углерод в виде графеновых пластин размером 3-10 нм, при следующем массовом соотношении компонентов, %:

алюмомагниевая шпинель (MgAl2O4) 99,3-99,49
оксид алюминия (Al2O3) 0,4-0,5
углерод (С) 0,01-0,3

причем алюмомагниевая шпинель и оксид алюминия находятся в наноструктурном состоянии с величиной области когерентного рассеяния 5-40 нм.

В настоящее время из патентной и научно-технической литературы не известен оптически прозрачный люминесцентный наноструктурный керамический материал на основе матрицы из алюмомагниевой шпинели, содержащей оксид алюминия и углерод в виде смеси графеновых пластин и графеновых квантовых точек в заявленном диапазоне содержания компонентов.

В ходе проведенных исследований авторами был разработан состав прозрачного керамического материала, обеспечивающий расширение арсенала технических средств (оптически прозрачных наноструктурных керамических материалов) интенсивно люминесцирующих в широком цветовом диапазоне с возможностью перестройки фотолюминесцентного отклика при изменении длины волны возбуждения (см. фиг. 2-5). А именно создан оптически прозрачный наноструктурный керамический материал с перестраиваемым диапазоном люминесценции обладающий интенсивным излучением в диапазоне от 330 до 580 нм, коэффициент оптического пропускания при длине волны 500 нм составляет 17%. При этом необходимо отметить, что в процессе получения оптически прозрачного люминесцентного наноструктурного материала часть пластин модифицируется в графеновые квантовые точки. О присутствии графеновых квантовых точек свидетельствует формирование фотолюминесцентного сигнала в широком спектральном диапазоне, максимум которого проявляет зависимость от длины волны возбуждения (фигуры 2-4). Немодифицированные графеновые пластины являются проводящим материалом, с отсутствием запрещенной зоны в их энергетической структуре. Формирование фотолюминесценцтного сигнала обеспечивается за счет присутствия локальных энергетических состояний в материале, обладающем зонной структурой уровней. Очевидно, что таким материалом выступают графеновые квантовые точки, формируемые в результате модификации графеновых нанопластин. Причем в случае выхода из предлагаемого диапазона содержания компонентов наблюдается значительное снижение значения коэффициента оптического пропускания, а также значительное снижение относительного уровня интенсивности излучения материала, состав и структура которого не соответствуют составу и структуре предложенного материала (см. строка 3 и 4 таблицы).

Изобретение поясняется фигурами:

На фиг. 1 изображен Рамановский спектр предлагаемого материала (пример 1). Моды, помеченные как D и G относятся к колебаниям, характерным для графеновых пластин, что подтверждает их наличие в материале.

На фиг. 2 изображены спектры фотолюминесценции материала состава: 1 – MgAl2O4 – 99,3%, Al2O3 - 0,4%, С – 0,3% (пример 1); 2 – MgAl2O4 – 99,49%, Al2O3 - 0,5%, С– 0,01% (Пример 2). Длина волны возбуждения составляет 265 нм.

На фиг. 3 изображены спектры фотолюминесценции материала состава: 1 – MgAl2O4 – 99,3%, Al2O3 - 0,4%, С– 0,3% (Пример 1); 2 – MgAl2O4 – 99,49%, Al2O3 - 0,5%, С– 0,01% (пример 2). Длина волны возбуждения составляет 340 нм.

На фиг. 4 изображены спектры фотолюминесценции материала состава: 1 – MgAl2O4 – 99,3%, Al2O3 - 0,4%, С– 0,3% (Пример 1); 2 – MgAl2O4 – 99,49%, Al2O3 - 0,5%, С– 0,01% (пример 2). Длина волны возбуждения составляет 400 нм.

На фиг. 5 изображен спектр коэффициента оптического пропускания предложенного материала (Пример 2).

Рамановские спектры записаны с помощью конфокального спектрометра LabRam HR800 Evolution (Horiba Jobin Yvon) при лазерном возбуждении 488 нм.

Коэффициент оптического пропускания зарегистрирован на спектрофотометре PerkinElmer Lambda 35 оснащенном галогеновой и дейтериевой лампами. Смена ламп происходила на длине волны 350 нм.

Спектры фотолюминесценции зарегистрированы с помощью спектрофлуориметра Fluorolog 3 (Horiba Jobin Yvon) с использованием CCD камеры Synapse S (соотношение сигнал/шум от 20000:1). В качестве возбуждения применялась ксеноновая лампа в стационарном режиме с мощностью 450 Вт.

Предлагаемый материал может быть получен следующим образом. Нанопорошки алюмомагниевой шпинели MgAl2O4, оксида алюминия Al2O3 с размерами частиц от 3 до 40 нм и углерода в виде графеновых пластин размером 3-10 нм, при следующем массовом соотношении компонентов, %:

алюмомагниевая шпинель (MgAl2O4) 99,3-99,49
оксид алюминия (Al2O3) 0,4-0,5
углерод (С) 0,01-0,3

причем алюмомагниевая шпинель и оксид алюминия находятся в наноструктурном состоянии с величиной области когерентного рассеяния 5-40 нм.

Затем осуществляется формование композиции под давлением 6 - 7 ГПа в течение 10-15 минут при 600-650оС.

В таблице приведены примеры выполнения предложенного оптически прозрачного наноструктурного керамического материала с перестраиваемым диапазоном люминесценции (примеры 1 и 2). Как показано на фиг. 1, в полученном материале фиксируются Рамановские моды D и G, характерные для графеновых нанопластин. Наноразмерные графеновые пластины являются базисным элементом формирования графеновых квантовых точек, проявляющих фотолюминесцентные свойства в широком спектральном диапазоне от 330 до 550 нм. На фиг. 2 приведены спектры фотолюминесценции предложенного материала (пример 1 и 2) при длине волны возбуждения 265 нм, из которых следует, что значение амплитуды спектра УФ излучения при длине волны 330 нм для предложенного материала (пример 1) составляет 480 относительных единиц, а материала состава по примеру 2 составляет 590 относительных единиц. Вместе с тем, одновременно наблюдается свечение в видимой спектральной области (синяя часть спектра), составляющее при длине волны 420 нм 500 и 650 относительных единиц для материала по примеру 1 и 2, соответственно. При переключении длины волны возбуждения на 340 нм наблюдается интенсивный фотолюминесцентный сигнал в видимой спектральной области, как показано на фиг. 3. Наибольшая интенсивность свечения в максимуме при 530 нм наблюдается материале (пример 2), и составляет 1750 относительных единиц, тогда как в материале (пример 1) интенсивность составляет 1200 относительных единиц. Последующее переключение возбуждения на длину волны 400 нм позволяет формировать в предлагаемом материале фотолюминесцентный сигнал также в видимом спектральном диапазоне, однако максимум фотолюминесценции смещается в 550 нм. Интенсивность фотолюминесцентного сигнала с максимумом при 550 нм (пример 1) составляет 1000 относительных единиц, тогда как (пример 2) интенсивность составляет 1600 относительных единиц.

Наличие оптической прозрачности в полученном материале, как показано на фиг. 5, расширяет рабочий участок керамики, распространяя его не только на поверхность, но и на объем, что является перспективным, для фотодиодных технологий.

Ниже описаны примеры способов получения предлагаемого люминесцентного материала.

Пример 1. Нанопорошки алюмомагниевой шпинели, оксида алюминия с размерами частиц от 3 до 40нм и углерода в виде графеновых пластин размером 3-10 нм смешивают в сапфировой ступке с использованием сапфирового пестика до получения гомогенной композиции состав (масс.%): 99,49 MgAl2O4, 0,01 углерода и 0,5 Al2O3. Затем осуществляется формование композиции под давлением 6 ГПа в течение 10 минут при 600оС. При этом обеспечивается достижение керамикой относительной плотности 96%.

В результате получен люминесцентный наноструктурный композиционный керамический материал, состав, оптическая прозрачность и интенсивность излучения приведены в таблице (строка 1) со средним размером зерен 22 нм.

Пример 2. Нанопорошки алюмомагниевой шпинели, оксида алюминия с размерами частиц от 3 до 40 нм и углерода в виде смеси графеновых пластин размером 3-10 нм смешивают в сапфировой ступке с использованием сапфирового пестика до получения гомогенной композиции состав (масс.%): 99,59 MgAl2O4, 0,01 углерода и 0,4 Al2O3. Затем осуществляется формование композиции под давлением 7 ГПа в течение 15 минут при 650оС. При этом обеспечивается достижение керамикой относительной плотности 97%.

В результате получен люминесцентный наноструктурный композиционный керамический материал, состав, оптическая прозрачность и интенсивность излучения приведены в таблице (строка 1) со средним размером зерен 25 нм.

Таблица.

№ образца материала MgAl2O4
вес%
Al2O3
вес%
Графен
вес%
Относительный уровень интенсивности излучения в полосе 330 нм при возбуждении 265 нм Относительный уровень интенсивности излучения в полосе 530 нм при возбуждении 340 нм Относительный уровень интенсивности излучения в полосе 550 нм при возбуждении 400 нм Коэффициент пропускания при λ = 500 нм
1 2 3 4 5 6 7 8
1(пример1) 99,49 0,5 0,01 480 1200 1000 12
2(пример 2) 99,3 0,4 0,3 590 1750 1600 17
3 99,599 0,4 0,001 40 42 40 10
4 98,6 0,4 1 41 40 41 4

Таким образом, авторами предлагается оптически прозрачный люминесцентный наноструктурный керамический материал, обладающий перестраиваемым фотолюминесцентным диапазоном, что позволит использовать его в LED приборах, приборах плазменных дисплейных панелях, перестраиваемых детекторах УФ-Вид спектрального диапазона, световых матричных индикаторов.

Источник поступления информации: Роспатент

Показаны записи 111-120 из 305.
10.05.2018
№218.016.46c0

Способ получения нанокристаллического магнитотвердого материала из сплава системы (nd, ho)-(fe, co)-b

Изобретение относится к производству аморфных и нанокристаллических металлических сплавов путем сверхбыстрой закалки расплавов. Способ получения нанокристаллического магнитотвердого материала из сплава системы (Nd, Ho)-(Fe, Со)-В включает плавление сплава в тигле и выдавливание расплава через...
Тип: Изобретение
Номер охранного документа: 0002650652
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.487a

Гелиодистиллятор

Изобретение может быть использовано для опреснения морских, минерализованных и загрязненных вод. Гелиодистиллятор содержит корпус с прозрачным покрытием 1 и дном 2, размещенный на плавающей платформе 3, конденсатор 8, зачерненные жгуты 5 из гидрофильного материала, прикрепленные внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002651025
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4882

Солнечный опреснитель

Изобретение относится к дистилляции морских, загрязненных или минерализованных вод посредством солнечной энергии. Солнечный опреснитель содержит заполненную жидкостью емкость 1 с оптически прозрачной крышкой 2, теплоприемник 3, выполненный в виде полого металлического стержня, погруженного в...
Тип: Изобретение
Номер охранного документа: 0002651003
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4928

Способ переработки жидких отходов производства диоксида титана

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты...
Тип: Изобретение
Номер охранного документа: 0002651019
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4bff

Способ получения безобжигового зольного гравия

Изобретение относится к технологиям переработки кислых зол ТЭС в заполнитель для бетонов конструкционного назначения. Способ получения безобжигового зольного гравия на основе кислой золы, негашеной извести и щелочного активизатора твердения включает измельчение, дозирование, перемешивание...
Тип: Изобретение
Номер охранного документа: 0002651863
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4f4c

Глушитель звука выстрела, изготовленный по технологии селективного лазерного сплавления металлов

Изобретение относится к области вооружения, а именно к глушителям. Глушитель звука выстрела содержит рабочую часть с перегородками, ячеистое тело и корпус. Корпус выполнен в монолитном исполнении всех своих частей и элементов. Глушитель содержит ребристую структуру заданной шероховатости...
Тип: Изобретение
Номер охранного документа: 0002652767
Дата охранного документа: 28.04.2018
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
18.05.2018
№218.016.51c9

Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной железобетонной опалубки

Изобретение относится к области контроля качества монолитного бетона в сборно-монолитных строительных конструкциях и может быть использовано в промышленном и гражданском строительстве. Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной...
Тип: Изобретение
Номер охранного документа: 0002653211
Дата охранного документа: 07.05.2018
Показаны записи 11-13 из 13.
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
09.10.2019
№219.017.d3a2

Способ получения формиата меди (ii)

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для...
Тип: Изобретение
Номер охранного документа: 0002702227
Дата охранного документа: 07.10.2019
15.05.2023
№223.018.5b3a

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
+ добавить свой РИД