×
15.05.2023
223.018.58d3

Результат интеллектуальной деятельности: Четвертичные аммонийные соли диазаадамантанов, обладающие актопротекторной активностью

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицинской химии и фармакологии, а именно к новым четвертичным аммониевым солям, конкретно к производным 5,7-диметил-1,3-диазаадамантана, содержащим монотерпеноидные фрагменты, общей формулы 1, включая пространственные изомеры, в том числе оптически активные формы, где X: CO, CH, C=NOH, а Z может быть галогеном или нитро-группой, обладающие актопротекторным действием. Технический результат: актопротекторное действие производных 5,7-диметил-1,3-диазаадамантана формулы 1. 3 ил., 3 табл., 8 пр.

Причинами снижения физической работоспособности является тяжелая и длительная работа, нервное переутомление, хронические заболевания, длительная химиотерапия (Cordeiro et al., 2017; Dougherty et al., 2019; Воронков и др., 2019). В клинической практике для коррекции снижения физической и умственной работоспособности используют препараты различных фармакологических групп, в том числе объединенных в общий класс «актопротекторы» (Oliynyk and Oh, 2012). Одними из основных представителей класса актопротекторов являются 2 препарата - бемитил и бромантан (Oliynyk and Oh, 2012).

По своей химической структуре бемитил является гидробромидом 2-этилтиобензимидазола (Zarubina et al., 2005). Наиболее близким по структуре к исследуемым агентам (патентуемому соединению) являются бензоиламиноадамантаны, адамантановые производные пара-хлорфеноксиуксусной кислоты и другие структурно близкие соединения, которые давно используются в медицине как средства для повышения резистентности человека к экстремальным факторам окружающей среды, но не как прямые стимуляторы физической работоспособности при нормальных условиях (Морозов и др., 1996; Spasov et al., 2000). К таким соединениям относится бромантан (N-(4-бромфенил)адамантан-2-амин). Бромантан является допингом с психостимулирующим действием и внесен в список запрещенных препаратов WADA (Docherty, 2008). Основными побочными эффектами у препаратов, обладающих психостимулирующими и антиастеническими свойствами, является эйфория, развитие патологического пристрастия, необходимость длительного и частого применения, нарушение оперантной деятельности (Ахапкина и Ахапкин, 2012). Поэтому изыскание новых низкотоксичных веществ, имеющих широкий спектр фармакологического действия и способных повышать физическую работоспособность, как в обычных, так и в экстремальных условиях является задачей первостепенной и необходимой.

Поставленная цель достигается применением в качестве актопротекторного средства соединений, представляющих собой производные 5,7-диметил-1,3-диазаадамантана общей формулой 1 (включая пространственные изомеры, в том числе оптически активные формы),

где X: CO, CH2, C=NOH, а Z может быть галогеном или нитро-группой, проявляющих актопротекторные свойства.

Четвертичные аммониевые соли общей формулы 1 могут быть синтезированы взаимодействием 5,7-диметил-1,3-диазаадамантанов 2, 3, 4 с терпеновыми галогенидами в соответствии с ниже представленной схемой. Замена противоиона с галогена на нитрат может быть выполнена, например, обменной реакцией с нитратом серебра.

Необходимые 5,7-диметил-1,3-диазаадамантаны 2-4 могут быть получены с хорошими выходами (52-85%), исходя из доступных гексаметилентетрамина и диэтилкетона (пентан-3-она) в соответствии со схемой (Ponomarev et al., 2015; Suslov et al., 2017):

Миртенил бромид 5 может быть получен из коммерчески доступного миртенола в соответствии со следующей схемой (Khomenko et al., 2017; Dvornikova et al, 2007):

Структура полученных соединений типа 1 подтверждена данными ЯМР-спектроскопии, масс-спектрометрии и элементного анализа.

Актопротекторную активность соединений -г исследовали на двух стандартных тестах (Миронов и Бунятян, 2012): тест Порсолта (предельного плавания) и бег на тредбане до отказа в сравнении с ближайшим аналогом бромантаном. Тест Порсолта (предельное плавание) в классическом его исполнении предназначен для оценки депрессивного поведения (Porsolt et al., 1977), однако этот тест также широко используется для оценки эффективности стимуляторов работоспособности в условиях неизбегаемого стресса. Тест предельного плавания представляет собой комбинированный жесткий вид стресса, сочетающий физический и эмоциональный компоненты (Каркищенко и др., 2012). Эффективными считали соединения, применение которых приводило к повышению работоспособности хотя бы в одном тесте.

В тесте предельного плавания мышей было установлено, что из производных 5,7-диметилдиазаадамантанона, содержащих фрагмент (-)-миртеналя и оксогруппу (С=О) в 6 положении, только соединение , вводимое в дозе 10 мг/кг, статистически достоверно повышало уровень физической работоспособности мышей в 2 раза относительно интактного контроля. Производное соединения , соединение с метиленовой группой в 6 положении не влияло на время плавания. Другие производные: с оксимной группой C=NOH в 6 положении и с анионом [NO3]- вместо галогена, увеличивали время плавания в 1.7 и 2.4 раз соответственно. В данных условиях только соединение достоверно увеличивало время плавания относительно группы бромантана в 1.7 раз (фиг. 1).

В тесте бега на тредбане «до отказа» после однократного введения соединений было установлено, что соединения и достоверно увеличивают дистанцию бега относительно контрольной группы через 24 часа после введения (на 42% и 46%, соответственно) (фиг. 2). Препарат сравнения бромантан не оказал достоверного влияния на дистанцию бега животных относительно контрольной группы.

Представленные результаты свидетельствуют о более выраженном, чем у бромантана, влиянии новых соединений на физическую выносливость в данных условиях.

При оценке влияния соединений на двигательно-исследовательскую активность животных в тесте «открытое поле» через 30 минут после введения исследуемых соединений показано, что исследуемые агенты , и препарат сравнения бромантан относительно интактного контроля снижают общее время движения, увеличивают время неподвижного момента (Таблица 1). Это может быть связано с тем, что первые стрессовые минуты в открытом поле у интактных мышей значительно усиливают количество движений и пройденной дистанции, а исследуемые агенты не вызывают такой острой реакции на открытое поле. Введение не повлияло на поведение мышей в открытом поле и все показатели на уровне интактного контроля. Введение соединения снизило почти в 1,5 раза дистанцию и время, проведенное в центре. В целом результат в тесте «открытое поле» можно интерпретировать как отсутствие психостимулирующего эффекта у исследуемых агентов, что облегчает возможное пролонгированное применение.

Изучение острой токсичности соединения показало, что оно является малотоксичным (LD50=2375 мг/кг).

Краткое описание чертежей:

На фиг. 1 представлено влияние производных -г и бромантана на выносливость мышей в тесте предельного плавания.

Где: * - достоверность различий по отношению к контрольной группе при p<0.05 (U-критерий Манна-Уитни),

# - различия на уровне тенденции по отношению к группе с введением бромантана 0.05<p<0.1 (р=0.06) (U-критерий Манна-Уитни).

На фиг. 2 показано влияние производных 1а-г и бромантана на выносливость мышей в тесте бега на тредбане «до отказа».

Где: *- достоверность различий по отношению к контрольной группе при p<0.05 (U-критерий Манна-Уитни).

Данные представлены как среднее значение ± стандартное отклонение.

Фиг. 3 – Беговая дорожка с мышами и «зоной усталости», при тесте на физическую выносливость по методике бега "до отказа" на шестидорожечном тредбане FT-200.

Спектральные исследования выполнены в Химическом Сервисном Центре коллективного пользования СО РАН.

Изобретение иллюстрируется следующими примерами:

Пример 1. Синтез 1-(2-(6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)-5,7-диметил-6-оксо-1,3-диазаадамантан бромида

К раствору 0.90 г (5 ммоль) 5,7-диметил-1,3-диазаадамантан-6-она 2 в 10 мл сухого бензола добавили 1.07 г (5 ммоль) (-)-2-(бромметил)-6,6-диметилбицикло[3.1.1]гепт-2-ена 5. Смесь нагрели до кипения и выдержали 4 часа. Выпавший осадок четвертичной соли отделили, промыли бензолом, этилацетатом и высушили в вакуум-эксикаторе. Получили 1.70 г продукта. Выход 87%.

-10.284 (C = 0.564 г/100 мл, MeOH). Масс-спектр: m/z= 314.2351 [C20H31ON2Br]+. Рассчитано: m/z= 394.1614. Элементный анализ, (%). Найдено: С, 59.85; Н, 8.65; Br, 21.09; N, 7.45; O, 2.96. C20H31ON2Br. Вычислено (%): C, 60.76; H, 7.90; Br, 20.21; N, 7.09; O, 4.05. Тпл = 205.7 °C, с разложением.

ЯМР 1Н (CDCl3, 500 МГц): 0.80 и 1.05 (2с, по 3Н, Н11, Н12), 1.04 (с, 3Н, Н22), 1.07 (д, 1Н, J20анти,20син=9.3, Н20анти), 1.28 (с, 3Н, Н21), 2.09-2.17 (м, 1Н, Н17), 2.27-2.44 (м, 3Н, Н16, H16’, H19), 2.44-2.51 (м, 1Н, Н20син), 2.92 (д, J=13.5, 2Н), 3.40 (дд, J=11.8, 2Н), 3.77 (м, все J<3.5, 2Н), 4.3 (шдд, J=12.5, 2H) – 4NCH2, 4.49-4.55 (м, 2H, Н2), 5.44 (м, 2H, 2J=11.6, 4J=4.8, H13) 6.15-6.17 (м, 1Н, Н15). ЯМР 13C (CDCl3, 125 МГц): 77.97 т. (С2), 64.87 и 65.16 (2т, C8, С9), 65.22 (т, C13) 45.44, 45.55 (2с, С5, С7), 206.21 (с, С6), 61.98, 62.09 (2т, С4, C10), 15.34 (2к, двойной интенсивности, С11, С12), 134.51 (с, С14), 136.20 (д, С15), 31.73 (т, С16), 39.51 (д, С17), 37.99 (с, С18), 46.60 (д, С19), 31.86 (т, С20), 25.76 (к, С21), 21.29 (к, С22).

Пример 2. Синтез 1-(2-(6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)-5,7-диметил-1,3-диазаадамантан бромида

К раствору 0.33 г (2 ммоль) 5,7-диметил-1,3-диазаадамантана 3 в 10 мл сухого бензола добавили 0.43 г (2 ммоль) (-)-2-(бромметил)-6,6-диметилбицикло[3.1.1]гепт-2-ена 5. Смесь нагрели до кипения и выдержали 4 часа. Выпавший осадок четвертичной соли отделили, промыли бензолом, этилацетатом и высушили в вакуум-эксикаторе. Получили 0.62 г продукта. Выход 82%.

-10.075 (C = 0.536 г/100 мл, MeOH). Масс-спектр: m/z= 301.2642 [C20H33N2Br]+. Рассчитано: m/z= 380.1822. Элементный анализ, (%). Найдено (%): С, 63.01; Н, 9.61; Br, 19.98. N, 7.40. C20H33N2Br. Вычислено (%): C, 62.98; H, 8.72; Br, 20.95; N, 7.35. Тпл= 205.2 °C, с разложением.

ЯМР 1Н (CDCl3, 500 МГц): 0.80 и 0.87 (2с, по 3Н, Н11, Н12), 0.87 (с, 3Н, Н22), 1.08 (д, 1Н, J20анти,20син=8.7, Н20анти), 1.26 (с, 3Н, Н21), 1.55 (кв, 2H, J=12.6, H6) 2.06-2.14 (м, 1Н, Н17), 2.26-2.40 (м, 3Н, Н16, H16’, H19), 2.42-2.49 (м, 1Н, Н20син), 2.69 (д, 2Н, J=13.4), 3.12 (д, J=13.4, 2Н), 3.29 (дд, J=11.4, 2Н), 3.73 (д, J=11.4, 2Н) – 4NCH2, 4.13 (шдд, 2H, J=12.6, H13), 4.78 (кв, 2H, J=11.4, H13), 6.15-6.17 (м, 1Н, Н15). ЯМР 13C (CDCl3, 125 МГц): 78.55 т. (С2), 64.87 и 65.16 (2т, C8, С9), 65.22 (т, C13) 45.44, 45.55 (2с, С5, С7), 31.80 (т, С6), 59.60, 59.62 (2т, С4, C10), 22.90 (2к, двойной интенсивности, С11, С12), 134.87 (с, С14), 135.39 (д, С15), 29.06 (т, С16), 39.54 (д, С17), 37.90 (с, С18), 46.77 (д, С19), 29.11 (т, С20), 25.81 (к, С21), 21.38 (к, С22).

Пример 3. Синтез 1-(2-(6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)-5,7-диметил-6-гидроксилимино-1,3-диазаадамантан бромида

К раствору 0.2 г (1 ммоль) оксима 5,7-диметил-1,3-диазаадамантан-6-она 4 в 10 мл тетрагидрофурана добавили 0.215 г (1 ммоль) (-)-2-(бромметил)-6,6-диметилбицикло[3.1.1]гепт-2-ена 5. Кипятили смесь в течение двух часов. Выпавший осадок четвертичной соли отделили, промыли тетрагидрофураном, этилацетатом и высушили в вакуум-эксикаторе. Получено 0.40 г продукта. Выход 93%.

-6.320 (C = 0.538 г/100 мл, MeOH). Масс-спектр: m/z= 312.2437 [C20H32ON3Br]+. Рассчитано: m/z= 409.1723. Элементный анализ, (%). Найдено (%): С, 57.04; Н, 8.59; Br, 19.56; N, 9.92; O, 4.89. C20H32ON3Br Вычислено (%): C, 58.53; H, 7.86; Br, 19.47; N, 10.24; O, 3.90. Тпл= 175.7 °C, с разложением.

ЯМР 1Н (CDCl3, 500 МГц): 0.94 и 1.38 (2с, по 3Н, Н11, Н12), 0.795 (с, 3Н, Н22), 1.30 (д, 1Н, J20анти,20син=8.8, Н20анти), 1.285 (с, 3Н, Н21), 2.07-2.12 (м, 1Н, Н17), 2.19-2.24 (м, 1Н, Н16), 2.24-2.31 (дм, 1H, H16’), 2.37-2.47 (дм, 2H, H19, Н20син), 2.92 (д, 1Н, J=13.0), 3.05 (кв, 2H), 3.18 (д, 1H, J=13.3), 3.31-3.60 (дм, 4Н) – 4NCH2, 3.60-3.84 (дм, 2H, Н2), 4.44-4.76 (дм, 2H, H13) 5.93-6.05 (м, 1Н, Н15), 10.85-10.94 (м, 1H, N-OH). ЯМР 13C (CDCl3, 125 МГц): 77.22 т. (С2), 65.22 и 65.39 (2т, C8, С9), 65.57 (т, C13) 37.10, 37.94 (2с, С5, С7), 152.40 (с, С6), 60.70, 60.79 (2т, С4, C10), 18.30 и 18.34 (2к, С11, С12), 134.37 (с, С14), 134.55 (д, С15), 30.65 (т, С16), 39.51 (д, С17), 37.56 (с, С18), 46.22 (д, С19), 31.48 (т, С20), 25.79 (к, С21), 21.13 (к, С22).

Пример 4. Синтез 1-(2-(6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)-5,7-диметил-1,3-диазаадамантан нитрата

К раствору 0.20 г (0.5 ммоль) 1-(2-(6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)-5,7-диметил-6-оксо-1,3-диазаадамантан бромида в 5 мл метанола добавили раствор 0.087 г (0.5 ммоль) нитрата серебра в 5 мл метанола. Через 2 часа осадок хлорида серебра отделили, фильтрат упарили в вакууме. Остаток перекристаллизовали из этилацетата. Получено 0.137 г продукта. Выход 72%.

-6.695 (C = 0.478 г/100 мл, MeOH). Масс-спектр: m/z= 314.2349 [C20H31O4N3]+. Рассчитано: m/z= 377.2309. Элементный анализ, (%). Найдено (%): С, 61.18; Н, 8.87; N, 11.62; O, 18.33. C20H31O4N3. Вычислено (%): C, 63.64; H, 8.28; N, 11.13; O, 16.95. Тпл= 167.3 °C, с разложением.

ЯМР 1Н (CDCl3, 500 МГц): 0.78 и 1.01 (2с, по 3Н, Н11, Н12), 1.03 (с, 3Н, Н22), 1.07 (д, 1Н, J20анти,20син=5.8, Н20анти), 1.27 (с, 3Н, Н21), 2.10-2.15 (м, 1Н, Н17), 2.26-2.29 (м, 1Н, Н16), 2.29-2.42 (дм, 2H, H16’, H19), 2.44-2.50 (м, 1Н, Н20син), 2.94 (д, J=12.6, 2Н), 3.46 (шдд, J=11.8, 2Н), 3.60 (дм, J=13.6, 2Н), 4.00 (шдд, J=12.5, 2Н), 4.09 (дд, J=12.5, 2H) – 4NCH2, 5.00 (дд, J=11.3, J=10.4, 2H, H13), 6.05-6.12 (м, 1Н, Н15). ЯМР 13C (CDCl3, 125 МГц): 78.63 т. (С2), 65.35 и 65.52 (2т, C8, С9), 66.13 (т, C13) 45.41, 45.52 (2с, С5, С7), 206.24 (с, С6), 62.37, 62.45 (2т, С4, C10), 15.25 (2к, двойной интенсивности, С11, С12), 134.54 (с, С14), 136.04 (д, С15), 31.70 (т, С16), 39.56 (д, С17), 37.96 (с, С18), 46.68 (д, С19), 31.93 (т, С20), 25.80 (к, С21), 21.23 (к, С22).

Пример 5. Физическую выносливость оценивали по методике предельного плавания мышей с грузом 10% от массы тела. Груз прикреплялся к основанию хвоста. Животное помещали в индивидуальный стеклянный цилиндр (высота 30 см, диаметр 8 см), наполненные водой (24-26°С). Критерием влияния препаратов на физическую выносливость служило время плавания животного до утомления, о котором свидетельствует погружение животного на дно, после чего животное сразу извлекали из воды и обсушивали (Гаврев и др., 2010; Каркищенко, 2010; Каркищенко и др., 2012). Исследуемые соединения вводились внутрибрюшинно за 30 минут до плавания в дозах 10 мг/кг. В качестве препарата сравнения был выбран бромантан (Воронина и др., 2017), который в дозе 50 мг/кг вводили внутрибрюшинно – аналогично исследуемым агентам. В опытных и контрольных группах использовалось 8 особей.

По тесту предельного плавания мышей было установлено, что из производных 5,7-диметилдиазаадамантанона, содержащих фрагмент (-)-миртеналя и оксогруппу (С=О) в 6 положении, соединение , вводимое в дозе 10 мг/кг, статистически достоверно повышало уровень физической работоспособности мышей в 2 раза относительно интактного контроля. Производное соединения , соединение с метиленовой группой в 6 положении не влияло на время плавания. Другие производные: с оксимной группой C=NOH в 6 положении и с анионом [NO3]- вместо галогена, увеличивали время плавания в 1.7 и 2.4 раз соответственно. В данных условиях только соединение достоверно увеличивало время плавания относительно группы бромантана в 1.7 раз (фиг. 1).

Пример 6. Физическую выносливость оценивали по методике бега "до отказа" на шестидорожечном тредбане FT-200, Chengdu Technology and Market Co., Ltd (Китай) (Dougherty et al., 2016). Предварительно мышей ежедневно в течение двух дней тренировали бегать при скорости движения 10 м/мин, в течение 10 минут с углом наклона 10° от горизонтальной плоскости. На третий день проводили исходное тестирование. Первые 10 минут скорость движения составляла 10 м/мин, последующее 5 минут скорость была 15 м/мин, начиная с 15 минуты скорость увеличивали на 2 единицы каждые 2 минуты.

В эксперименте рассчитывали дистанцию бега в соответствии со скоростью и временем бега для каждой мыши по формуле:

S=Ʋ1*Ƭ1+Ʋ2*Ƭ2 + … + Ʋn*Ƭn, где

S – пройденная дистанция, м;

Ʋ – скорость движения ленты, м/мин;

Ƭ – время, движения ленты при определенной скорости, мин;

n–число периодов смены скоростей.

В данном тесте состояние, подобное утомлению у животных, определяется как нахождение в течение 5-ти последовательных секунд в «зоне усталости». «Зона усталости» определяется как область, включающая нижнюю часть беговой дорожки в пределах размера одной длины сетки с током, а также самой сетки (на рисунке отмечено черным прямоугольником) (фиг. 3).

На четвертый и пятый день проводили тестирование по методике аналогичной третьему дню через 0.5, 3.0 и 24 часа после введения исследуемых агентов соответственно. Фиксировали время бега животного, пройденную дистанцию.

Статистическую обработку данных проводили с использованием программы Statistica 6.0. Данные представлены в виде средних арифметических и стандартных ошибок среднего. Сравнения между группами проводили при помощи непараметрического U-критерия Манна–Уитни (Mann–Whitney U Test). Для сравнения показателей изменений на одной и той же выборке внутри одной группы, но в разных условиях использовали W-критерий Уилкоксона. За достоверный уровень значимости принимали p≤0.05. Различия на уровне тенденции рассматривали при значениях 0.05<p<0.1.

В тесте бега на тредбане «до отказа» после однократного введения соединений было установлено, что соединения и достоверно увеличили дистанцию бега относительно контрольной группы через 24 часа после введения (на 42% и 46% соответственно) (фиг. 2). Препарат сравнения бромантан не оказал достоверного влияния на дистанцию бега животных относительно контрольной группы.

Представленные данные свидетельствуют о более выраженном, чем у бромантана, влиянии новых соединений на физическую работоспособность в данных условиях.

Пример 7. Тест «открытое поле» широко применяется в фармакологическом скрининге и фенотипировании животных (Фурсенко и др., 2015). Данный тест оценивает двигательное и исследовательское поведение животных и позволяет выявлять значительные нарушения в нервно-мышечной, сенсорной и вегетативной системах организма и оценивать более тонкие функциональные изменения, связанные с индивидуальным и социальным поведением животных в ответ на введение различных фармакологических агентов.

При оценке влияния соединений на двигательно-исследовательскую активность животных в тесте «открытое поле» через 30 минут после введения исследуемых соединений показано, что исследуемые агенты , и препарат сравнения бромантан относительно интактного контроля снижают общее время движения, увеличивают время неподвижного момента (Таблица 1). Это может быть связано с тем, что первые стрессовые минуты в открытом поле у интактных мышей значительно усиливают количество движений и пройденной дистанции, а исследуемые агенты не вызывают такой острой реакции на открытое поле.

Введение не повлияло на поведение мышей в открытом поле и все показатели на уровне интактного контроля. Введение соединения снизило почти в 1,5 раза дистанцию и время, проведенное в центе поля.

Таблица 1. Горизонтальная активность в тесте открытое поле (в сравнении с интактным контролем)

Общее время движения, с Неподвижный момент, с Дистанция, см Дистанция на периферии, см Время, проведенное на периферии, с Дистанция в центре, см Время, проведенное в центре, с
Контроль M 200.96 99.04 1274.27 679.38 189.63 402.03 110.38
SD 11.84 11.84 138.02 123.20 17.62 67.08 17.62
Бромантан M 176.71* 123.29* 958.37* 536.33 188.08 308.90 111.92
SD 9.60 9.60 134.99 164.00 40.56 126.70 40.56
M 172.04* 127.96* 896.83* 524.38 200.54 266.27* 99.46
SD 10.77 10.77 127.36 140.21 35.54 95.83 35.54
M 192.79 107.21 1185.65 646.58 201.88 359.67 98.13
SD 10.95 10.95 188.60 117.70 15.16 41.99 15.16
M 187.04 112.96 1102.82* 669.70 214.33* 278.58* 85.67*
SD 5.58 5.58 64.20 60.61 17.14 64.74 17.14
M 183.13* 116.88* 1087.43* 580.25 200.79 340.58 99.21
SD 9.88 9.88 98.76 120.73 22.19 104.75 22.19

Примечание: *- достоверность различий по отношению к интактному контролю при p<0.05(U-критерий Манна-Уитни)

Данные представлены как среднее значение (M) ± стандартное отклонение (SD)

Пример 8. При определении LD50 соединения оценивали количественный эффект по смертности/выживаемости животных. LD50 рассчитывали по методам Кербера и Першина (Беленький, 1959). Соединение вводили внутрижелудочно зондом. При летальных дозах гибель животных происходила в интервале 7 – 10 мин при введении больших доз - 3500, 5000 мг/кг доходя до 30 минут при введении 2500 мг/кг. У мышей при летальных дозах наблюдались судороги по типу клонических, посинение хвоста, морды. При вскрытии, при макроскопическом осмотре внутренних органов (печень, почки, легкие, сердце, селезенка, кишечник) изменения не были выявлены.

LD50 для определяли в рабочем интервале, нижняя граница которого – все 6 мышей живы, верхняя – все 6 мышей погибли.

1. Метод Кёрбера (1931). Метод требует одинаковое количество животных в группе, достаточным количеством является 6 животных в группе (Таблица 2).

LD50 = LD100 – Σ (z*d)/m, где

LD100 – доза, при которой наблюдается гибель 100% животных;

d – интервал между каждыми двумя смежными дозами;

z – среднее арифметическое из числа животных, у которых наблюдалась учитываемая реакция под влиянием каждых двух смежных доз;

m – число животных в каждой группе.

Таблица 2. Обработка материала по изучению токсичности с помощью метода Кёрбера

Дозы, мг/кг 1000 2500 3500 5000
Выжило 6 2 1 0
Погибло 0 4 5 6
z 2 4.5 5.5
d 1500 1000 1500
zd 3000 4500 8250

LD50 = 5000 - 15750/6 = 5000 - 2625 = 2375 мг/кг

2. Метод Першина (1939, 1950) (Таблица 3)

LD50 = Σ[(a+b)*(m-n)]/200, где

a и b – величины смежных доз;

m и n – соответствующие этим дозам частоты смертельных исходов в процентах.

Таблица 3. Обработка материала по изучению токсичности для определения LD50 по формуле Г.Н. Першина

Дозы, мг/кг 1000 2500 3500 5000
Наблюдавшиеся результаты 0/6 4/2 5/1 6/0
% погибших животных 0 66.7 83.3 100
a+b 3500 6000 8500
m-n 66.7 16.6 16.7
(a+b)*(m-n) 233450 99600 141950

LD50 = 475000/200 = 2375 мг/кг

Список использованной литературы

Docherty, J. R. (2008). Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). Br. J. Pharmacol. 154, 606–622. doi: 10.1038/bjp.2008.124.

Dougherty, J. P., Springer, D. A., and Gershengorn, M. C. (2016). The Treadmill Fatigue Test: A Simple, High-throughput Assay of Fatigue-like Behavior for the Mouse. J. Vis. Exp. JoVE. doi:10.3791/54052.

Oliynyk, S., and Oh, S. (2012). The Pharmacology of Actoprotectors: Practical Application for Improvement of Mental and Physical Performance. Biomol. Ther. 20, 446–456. doi: 10.4062/biomolther.2012.20.5.446.

Porsolt, R. D., Bertin, A., and Jalfre, M. (1977). Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327–336.

Spasov, A. A., Khamidova, T. V., Bugaeva, L. I., and Morozov, I. S. (2000). Adamantane derivatives: Pharmacological and toxicological properties (review). Pharm. Chem. J. 34, 1–7. doi: 10.1007/BF02524549.

Zarubina, I. V., Nurmanbetova, F. N., and Shabanov, P. D. (2005). Bemithyl potentiates the antioxidant effect of intermittent hypoxic training. Bull. Exp. Biol. Med. 140, 190–193. doi: 10.1007/s10517-005-0442-8.

Ахапкина, В. И., Ахапкин, Р. В. (2012). Фундаментальные основы модуляторной концепции и классификация модуляторных лекарственных средств. РМЖ 20, 933–951.

Беленький, М. Л. (1959) Элементы количественной оценки фармакологического эффекта. Акад. наук Латв. ССР, Рига

Воронина, Т. А., Капица, И. Г., Иванова, Е. А. (2017). Сравнительное исследование влияния мексидола и милдроната на физическую работоспособность в эксперименте. Журнал Неврологии и Психиатрии им C.С. Корсакова 117, 71–74.

Каркищенко, В. Н., Фокин, Ю. В., Казакова, Л. Х., Алимкина, О. В., Касинская, Н. В. (2012). Методики изучения физиологических функций лабораторных животных для доклинических исследований в спортивной медицине. Биомедицина, 15–21.

Миронов, А. Н., Бунятян, Н. Д. (2012). Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Гриф и К. Москва.

Морозов, И. С., Арцимович, Н. Г., Климова, Н. В., Фадеева, Т. А., Зайцева, Н. М., Галушина, Т. С., и др. (1996). 2-(пара-бромбензоил) или 2-(пара-хлорбензоил) аминоадамантаны, повышающие резистентность организма к действию экстремальных факторов среды обитания и обладающие иммуностимулирующей активностью — SU 1646256. Available at: http://patents.su/1-1646256-2-para-brombenzoil-ili-2-para-khlorbenzoil-aminoadamantany-povyshayushhie-rezistentnost-organizma-k-dejjstviyu-ehkstremalnykh-faktorov-sredy-obitaniya-i-obladayushhie-immunostimuli.html [Accessed February 2, 2018].

Фурсенко, Д. В., Хоцкин, Н. В., Куликов, В. А., Куликов, А. В. (2015). Поведенческое фенотипирование мышей с нокаутом по фактору некроза опухоли. Вавиловский Журнал Генетики и Селекции 19, 394-398–398. doi: 10.18699/VJ15.050.

Источник поступления информации: Роспатент

Показаны записи 81-84 из 84.
20.05.2023
№223.018.67f1

Модифицированная питательная среда для культивирования растений картофеля на основе агаризованной питательной среды мурасиге-скуга и способ выращивания растений картофеля в асептических условиях с использованием данной питательной среды

Изобретение относится к области биотехнологии, а именно к новым нанокомпозитам (НК) на основе природных полисахаридов арабиногалактана (I), сульфата арабиногалактана (II) и κ-каррагинана (III) с марганецсодержащими наночастицами, а также к способу выращивания растений с использованием НК при...
Тип: Изобретение
Номер охранного документа: 0002794777
Дата охранного документа: 24.04.2023
05.06.2023
№223.018.774f

Адамантилсодержащие производные 1,2,4-триазола и 1,3,4-тиадиазола, имеющие монотерпеноидные фрагменты, используемые в качестве ингибиторов фермента тирозил-днк-фосфодиэстеразы 1

Изобретение относится к молекулярной биологии, биохимии и биотехнологии, конкретно к адамантил-монотерпеновым гибридам, сочлененным через 1,3,4-тиадиазол-2-аминовый и 1H-1,2,4-триазол-3-тиольный фрагменты. Предложено применение адамантилсодержащих производных 1,2,4-триазола и 1,3,4-тиадиазола,...
Тип: Изобретение
Номер охранного документа: 0002761880
Дата охранного документа: 13.12.2021
16.06.2023
№223.018.7a13

Комплексы меди(ii) с фторированными радикалами, способные к переносу через газовую фазу с сохранением структуры

Изобретение относится к области молекулярного магнетизма, а именно к стабильным высоколетучим гетероспиновым комплексам меди (II) с полифторированными лигандами двух типов – гексафторацетилацетонат-ионами (hfac) и полифторированными парамагнитными лигандами (L), представленным формулами...
Тип: Изобретение
Номер охранного документа: 0002736262
Дата охранного документа: 12.11.2020
16.06.2023
№223.018.7bb4

1,2,4-оксадиазольные производные дезоксихолевой кислоты, обладающие простатопротекторным действием, гипохолестеринемической и противовоспалительной активностями

Изобретение относится к фармацевтической химии, конкретно к соединениям, представляющим собой оксадиазольные производные дезоксихолевой кислоты формулы I, в которой R представляет собой Me или Ph. Технический результат заключается в расширении ряда простатопротекторных средств, обладающих также...
Тип: Изобретение
Номер охранного документа: 0002750488
Дата охранного документа: 28.06.2021
Показаны записи 81-90 из 106.
18.05.2019
№219.017.56cf

Способ получения усниновой кислоты

Изобретение относится к химико-фармацевтической промышленности. Проводят экстракцию смеси лишайников родов Usnea и Cladonia органическим растворителем (хлороформ, четыреххлористый углерод, ацетон, гексан, петролейный эфир, нефрас и смеси перечисленных растворителей) с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002317076
Дата охранного документа: 20.02.2008
18.05.2019
№219.017.589c

Способ получения пентаникотината глицирризиновой кислоты, являющегося ингибитором репродукции вируса иммунодефицита человека

Изобретение относится к способу получения пентаникотината глицирризиновой кислоты без примесей путем взаимодействия глицирризиновой кислоты или ее аммонийной соли с химическим реагентом в растворителе с получением полиникатинатов глицирризиновой кислоты в виде осадка. В качестве химического...
Тип: Изобретение
Номер охранного документа: 0002363703
Дата охранного документа: 10.08.2009
18.05.2019
№219.017.59cf

8-(трифторметил)бензо[f][1,2,3,4,5]пентатиепин-6-амин в качестве анальгезирующего средства

Изобретение относится к области фармацевтики и медицины и касается применения 8-(трифторметил)бензо[f][1,2,3,4,5]пентатиепин-6-амина формулы 1 в качестве анальгезирующего средства. Средство обладает высокой активностью и низкой токсичностью. 2 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002453311
Дата охранного документа: 20.06.2012
18.05.2019
№219.017.5b75

Средство для борьбы с болезнями пшеницы

Изобретение относится к сельскому хозяйству. Средство содержит экстракт древесины лиственницы, полученный при экстракции опилок лиственницы смесью ацетона и этилового спирта (1:1 по объему), соль 2,4-дихлорфеноксиуксусной кислоты с N,N'-тетраметилдиаминометаном и экстракт смеси лишайников рода...
Тип: Изобретение
Номер охранного документа: 0002464785
Дата охранного документа: 27.10.2012
24.05.2019
№219.017.6064

3-метил-6-(проп-1-ен-2-ил)циклогекс-3-ен-1,2-диол в качестве анальгезирующего средства

Изобретение относится к области медицины и фармацевтики и касается анальгезирующего средства, представляющего собой 3-метил-6-(проп-1-ен-2-ил)циклогекс-3-ен-1,2-диол. Средство обладает высокой активностью, низкой токсичностью и может быть получено из доступного природного соединения α-пинена. 3...
Тип: Изобретение
Номер охранного документа: 0002409351
Дата охранного документа: 20.01.2011
29.05.2019
№219.017.6220

Средства для ингибирования фермента тирозил-днк-фосфодиэстеразы 1 на основе желчных кислот

Изобретение относится к применению соединения, представляющего собой производные желчных кислот общей формулы I, в которой R представляет -ОН, -ОАс, O-СН; Rпредставляет -Н, -ОН, -ОАс; R=-Н, -ОН, -ОАс, -O-СН; R представляет адамантил, -фенил, необязательно замещенный бромом, -метилом;...
Тип: Изобретение
Номер охранного документа: 0002689335
Дата охранного документа: 27.05.2019
09.06.2019
№219.017.7d64

Средство для коррекции цитостатической полихимиотерапии с противовоспалительной активностью

Изобретение относится к фармацевтической промышленности, в частности к средству, которое является корректором цитостатической полихимиотерапии. Применение производного бетулоновой кислоты в качестве корректора цитостатической полихимиотерапии, повышающего ее противоопухолевое действие,...
Тип: Изобретение
Номер охранного документа: 0002425680
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.7fc1

Способ получения α-камфоленового спирта

Настоящее изобретение относится к способу получения α-камфоленового спирта, который обладает ценными органолептическими свойствами и может быть использован в парфюмерной промышленности. Способ заключается в превращении эпоксида α-пинена с применением гетерогенного катализатора в трубчатом...
Тип: Изобретение
Номер охранного документа: 0002461540
Дата охранного документа: 20.09.2012
19.06.2019
№219.017.8754

Соли ди- и триникотинатов глицирризиновой кислоты и ингибитор репродукции вируса иммунодефицита человека на их основе

Изобретение относится к биологически активным веществам, производным глицирризиновой кислоты, а именно солям ди- и/или триникотинатов глицирризиновой кислоты, являющимся ингибиторами репродукции вируса иммунодефицита человека, включая соли ди- и/или триникотинатов глицирризиновой кислоты....
Тип: Изобретение
Номер охранного документа: 0002376312
Дата охранного документа: 20.12.2009
06.07.2019
№219.017.a7da

Способ получения риккардина с

Изобретение относится к химико-фармацевтической промышленности. Осуществляют обработку надземной части и корней растения примула крупночашечковая (Primula macrocalyx Bge.) органическим растворителем - петролейным эфиром или гексаном с последующей экстракцией ацетоном и выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002340350
Дата охранного документа: 10.12.2008
+ добавить свой РИД