×
15.05.2023
223.018.57ec

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002767585
Дата охранного документа
17.03.2022
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). Сущность заявленного решения заключается в том, что в способе измерения физических свойств диэлектрической жидкости, при котором возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых соответственно контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии. Техническим результатом настоящего изобретения является повышение точности измерения физических свойств диэлектрической жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Известно техническое решение (RU 2285913 С1, 20.10.2006), которое содержит описание способа, согласно которому производят измерения физических свойств жидкостей с применением двух независимых измерительных каналов, рабочего и эталонного, с чувствительными элементами (измерительными ячейками) в виде отрезков коаксиальной линии. Они являются резонаторами с колебаниями основного типа ТЕМ и заполняются, соответственно, контролируемой жидкостью и эталонной жидкостью. Для реализации данного способа применяют линии связи этих чувствительных элементов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя. Информативным параметром каждого измерительных канала является основная резонансная частота электромагнитных колебаний соответствующего резонатора.

Недостатком этого способа является невысокая точность измерения. Это вызвано тем, что чувствительные элементы (коаксиальные резонаторы) измерительного и эталонного каналов содержат, соответственно, контролируемую и эталонную жидкость, находящиеся в разных внешних условиях, в частности при температуре, которая может быть различной в местах расположения этих чувствительных элементов -коаксиальных резонаторов. Это приводит к снижению точности измерения вследствие разных, зависящих от температуры, изменений электрофизических параметров этих жидкостей и, следовательно, значений информативного параметра - резонансной частоты электромагнитных колебаний. Особенно влияние такого отличия на точность измерения сказывается при определении малых значений содержания какой-либо жидкости в смеси жидкостей (растворе).

Известно также техническое решение (RU 2424508 С1, 20.07.2011), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных колебаний основного типа ТЕМ в двух отрезках коаксиальной длинной линии (коаксиального волновода), заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью, располагаемых соосно и образованных совокупностью двух соосных металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии. Измеряют резонансные частоты электромагнитных колебаний типа ТЕМ этих отрезков коаксиальной длинной линии с контролируемой жидкостью и эталонной жидкостью и по соотношению (разности) значений измеренных резонансных частот судят об измеряемом физическом свойстве контролируемой жидкости.

Недостатком данного способа измерения является ограниченность его функциональных возможностей, обусловленная организацией в каждом из измерительных каналов, рабочем и эталонном, радиочастотного резонатора на основе отрезка коаксиальной длинной линии и определении резонансной частоты электромагнитных колебаний резонатора. При невысокой добротности таких резонаторов, что может иметь место при контроле жидкостей, являющимися несовершенными диэлектриками, при наличии потерь электромагнитной энергии в проводниках отрезков коаксиальной длинной линии, точность измерения является невысокой из-за невозможности высокоточного измерения резонансных частот таких резонаторов.

Техническим результатом настоящего изобретения является повышение точности измерения физических свойств диэлектрической жидкости.

Технический результат достигается тем, что в способе измерения физических свойств диэлектрической жидкости возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов, и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии.

На чертеже изображена функциональная схема устройства для реализации способа.

В схему введены обозначения: 1 и 2 - отрезки коаксиальной длинной линии, 3 и 4 - внутренний и внешний цилиндры, 5 - центральный проводник, 6 и 7 - линии связи, генераторы 8 и 9, направленные ответвители 10, 11, 12 и 13, фазовые детекторы 14 и 15, функциональный преобразователь 16, регистратор 17.

Способ реализуется следующим образом.

Согласно данному способу измерения физических свойств диэлектрической жидкости, возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью. Производят измерение значения информативного параметра каждого из чувствительных элементов, и по отличию этих значений информативного параметра в этих двух чувствительных элементах судят о величине измеряемого физического свойства жидкости. В данном способе возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, а в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце.

Один из чувствительных элементов - отрезок коаксиальной длинной линии 1 - образован совокупностью внешнего цилиндра 4 и наружной поверхности внутреннего цилиндра 3, а другой чувствительный элемент - отрезок коаксиальной длинной линии 2 - совокупностью центрального проводника 5 и внутренней поверхностью соосного с ним металлического внутреннего цилиндра 3. Пространство между проводниками одного из этих отрезков коаксиальной длинной линии заполняется эталонной жидкостью, имеющей номинальное значение измеряемого физического свойства, а пространство между проводниками другого отрезка коаксиальной длинной линии заполняется контролируемой жидкостью. При этом не имеет принципиального значения, какая из данных жидкостей находится в том или другом чувствительном элементе.

При заполнении жидкостью пространства между проводниками каждого из отрезков коаксиальной длинной линии 1 и 2 изменяется величина измеряемого информативного параметра - фазового сдвига возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце -в зависимости от значения диэлектрической проницаемости ε и ε0, соответственно, контролируемой и эталонной жидкости. Величины ε(х) и ε00) функционально связаны с соответственно, измеряемым х и номинальным х0 значениями измеряемого физического свойства жидкости. Данные чувствительные элементы (отрезки коаксиальной длинной линии 1 и 2) функционируют независимо друг от друга; их электрические/электромагнитные поля не оказывают взаимовлияния.

Для фазового сдвига Δϕ возбуждаемых на фиксированной частое ƒ в отрезке длинной линии электромагнитных волн и волн, отраженных от противоположного (нижнего) конца отрезка длинной линии и принимаемых на том же конце, где производим возбуждение волны, имеем следующее выражение: (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С.73-74):

где ƒ - частота генератора, с - скорость света, l - длина отрезка длинной линии, ε -относительное значение диэлектрической проницаемости жидкости, Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце отрезка длинной линии.

Фазовый сдвиг Δϕ0 обусловлен отражением от нагрузки на конце отрезка длинной линии и имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π, для разомкнутого на конце отрезка длинной линии имеем Δϕ0. Здесь ХН - реактивное нагрузочное сопротивление, W - волновое (характеристическое) сопротивление отрезка длинной линии.

Будем для определенности считать, что каждый из двух отрезков коаксиальной длинной линии 1 и 2 разомкнут на его конце; в этом случае Δϕ0. Будем также для определенности считать, что пространство между проводниками отрезка коаксиальной длинной линии 1 заполняется контролируемой жидкостью с диэлектрической проницаемости ε, а пространство между проводниками отрезка коаксиальной длинной линии 2 заполняется эталонной жидкостью с диэлектрической проницаемости ε0.

Тогда с учетом соотношения (1) для отрезка коаксиальной длинной линии 1 будем иметь следующее выражение для фазового сдвига Δϕ1 возбуждаемых и принимаемых электромагнитных волн;

а для отрезка коаксиальной длинной линии 2 - следующее выражение для фазового сдвига Δϕ2 возбуждаемых и принимаемых электромагнитных волн;

В отрезке коаксиальной длинной линии 1 возбуждают электромагнитные волны с применением высокочастотного генератора 8 фиксированной частоты. Отраженные от конца отрезка коаксиальной длинной линии 1 электромагнитные волны, а также прямые волны (часть их мощности) подаются от генератора 8 на фазовый детектор 14. Для этой цели служат направленные ответвители 10 и 11, соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 14, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение которого пропорционально разности фаз Δϕ1 этих волн.

В отрезке коаксиальной длинной линии 2 возбуждают электромагнитные волны с применением высокочастотного генератора 9 фиксированной частоты. Отраженные от конца отрезка коаксиальной длинной линии 2 электромагнитные волны, а также прямые волны (часть их мощности) подаются от генератора 9 на фазовый детектор 15. Для этой цели служат направленные ответвители 12 и 13, соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 15, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение которого пропорционально разности фаз Δϕ2 этих волн.

Направленный ответвитель 12 соединен с помощью проводников линий связи 6 с отрезком коаксиальной длинной линии 1, а направленный ответвитель 13 соединен с помощью проводников линий связи 7 с отрезком коаксиальной длинной линии 2. На выходе фазового детектора 15, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение которого пропорционально разности фаз Δϕ2 этих волн.

Выходы фазовых детекторов 14 и 15 подсоединены ко входу функционального преобразователя 16, выходом подключенного ко входу регистратора 17, выходной сигнал которого соответствует значению измеряемого физического свойства жидкости.

Согласно данному способу измерения, в качестве информативного параметра каждого из отрезков коаксиальной длинной линии 1 и 2 может быть использован соответствующие значения Δϕ1 и Δϕ2 фазового сдвига возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на противоположном его конце. В этом случае будем иметь: О величине измеряемого физического свойства жидкости судят по отличию значений Δϕ1 и Δϕ2 фазового сдвига в двух отрезках коаксиальной длинной линии 1 и 2.

Поскольку отрезки коаксиальной длинной линии 1 и 2 пространственно-совмещены, то они находятся в одинаковых внешних условиях, в частности, при одной и той же температуре. Следовательно, результат совместной функциональной обработки в функциональном преобразователе 16 значений Δϕ1 и Δϕ2 фазового сдвига в двух отрезках коаксиальной длинной линии 1 и 2, соответствующих измеряемому значению х и номинальному значению хо измеряемого физического свойства жидкости, не зависит от температуры, а только от величины измеряемого параметра.

Отрезки коаксиальной длинной линии 1 и 2 могут иметь одинаковые начальные (в отсутствие жидкостей) значения Δϕ10 и Δϕ20 фазовых сдвигов Δϕ1 и Δϕ2. При равенстве Δϕ10 и Δϕ20 их разность, определяемая в функциональном преобразователе 16, равна нулю как в отсутствие контролируемой и эталонной жидкостей, так и наличии одной и той же жидкости (т.е. при начальных условиях х=х0) в обоих отрезках коаксиальной длинной линии 1 и 2. В этом случае разность значений фазовых сдвигов Δϕ1 и Δϕ2 соответствует только изменению х-х0 значения измеряемого физического свойства жидкости, что особенно важно при проведении высокоточных измерений малых значений содержания одной жидкости в смеси жидкостей (растворе). Для конструкции на фиг. 1 такая идентичность обеспечивается одинаковой длиной l отрезков коаксиальной длинной линии 1 и 2 и выбором соотношения диаметров проводников 3, 4 и 5 отрезков коаксиальной длинной линии 1 и 2. Для отрезков коаксиальной длинной линии 1 и 2, имеющих одинаковую длину l, соотношение Δϕ10=Δϕ20 обеспечивается при равенстве погонных значений электрических емкостей С1 и С2 отрезков коаксиальной длинной линии 1 и 2 (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. С. 125-131). Для конструкции на фиг. 1 электрические емкости С1 и С2 отрезков коаксиальной длинной линии 1 и 2 выражаются следующими соотношениями: где ε0 = 1/36π⋅109 Ф/м - абсолютная диэлектрическая проницаемость вакуума, d1, d2, d3, d4 - соответственно, диаметр внешнего цилиндра, наружный диаметр внутреннего цилиндра, внутренний диаметр внутреннего цилиндра и диаметр центрального проводника. Следовательно, Δϕ10=Δϕ20, если С12, что соответствует следующему соотношению: d1/d2 = d3/d4.

Таким образом, данный способ реализуется достаточно просто на основе двух отрезков коаксиальной длинной линии с возбуждением в них электромагнитных волн фиксированной частоты. Он не связан с рассмотрением отрезков коаксиальной длинной линии как резонаторов и проведением измерений их соответствующих значений резонансной частоты электромагнитных колебаний. Способ позволяет с высокой точностью измерять различные физические свойства диэлектрических жидкостей за счет возможности контроля одной и той же области контролируемой жидкости, находящейся при одинаковых внешних условиях (температуре, давлении и др.). Его, в частности, целесообразно применять при наличии различных дестабилизирующих факторов, в частности, изменений температуры, имеющей разное значение в разных областях емкости с контролируемой жидкостью.

Способ измерения физических свойств диэлектрической жидкости, при котором возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых соответственно контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, отличающийся тем, что возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 276.
27.12.2014
№216.013.1521

Способ измерения резонансной частоты

Изобретение относится к измерительной технике и предназначено для высокоточного определения резонансной частоты с использованием цифровых методов обработки сигналов, а также определения величин, которые функционально связаны с резонансной частотой резонаторов, входящих в состав радиочастотных...
Тип: Изобретение
Номер охранного документа: 0002536833
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1618

Система определения гидродинамических коэффициентов математической модели движения судна

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок...
Тип: Изобретение
Номер охранного документа: 0002537080
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1a5f

Устройство фильтрации гармоник сетевого напряжения

Использование: в области электроэнергетики. Технический результат - уменьшение потерь энергии, обусловленных постоянным подключением к сети резонансных фильтров-подавителей, гармоники которых в данный момент отсутствуют. Устройство фильтрации гармоник сетевого напряжения содержит включенный в...
Тип: Изобретение
Номер охранного документа: 0002538179
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ae4

Кольцевой генератор на кмдп транзисторах

Изобретение относится к области вычислительной техники и может быть использовано в системах тактовой синхронизации микропроцессорных устройств. Достигаемый технический результат - расширение функциональных возможностей путем генерирования сигналов типа меандра-трапеции, кроме сигналов типа...
Тип: Изобретение
Номер охранного документа: 0002538312
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2488

Устройство анализа результатов тестирования для поиска неисправных блоков

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами...
Тип: Изобретение
Номер охранного документа: 0002540805
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c2

Способ измерения резонансной частоты

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках. Способ измерения заключается в том, что периодически на вход резонатора подают колебания с частотой, изменяющейся дискретно с заданным шагом в прямом и обратном...
Тип: Изобретение
Номер охранного документа: 0002541119
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28a2

Устройство для оценки экономической эффективности процесса управления сложными системами

Изобретение относится к вычислительной технике и может быть использовано для оценки экономической эффективности процесса управления сложными системами. Техническим результатом является повышение надежности процесса управления, а также расширение арсенала технических вычислительных средств....
Тип: Изобретение
Номер охранного документа: 0002541859
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2bc3

Парафазный логический элемент

Изобретение относится к парафазному логическому элементу. Технический результат заключается в уменьшении потребляемой мощности в расчете на один такт. Логический элемент содержит два транзистора р-типа, первый тактовый транзистор n-типа и логический блок, включающий прямые и инверсные ключевые...
Тип: Изобретение
Номер охранного документа: 0002542660
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e42

Радиоволновое устройство для обнаружения живых людей под завалами и за стенами зданий

Изобретение относится к поисково-спасательной службе и может быть использовано для активного зондирования с целью объективного определения наличия в них человека с признаками жизни и оценки его состояния по частотам дыхания и пульса. Технический результат - повышение точности обнаружения живого...
Тип: Изобретение
Номер охранного документа: 0002543310
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
Показаны записи 51-60 из 86.
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
+ добавить свой РИД