×
15.05.2023
223.018.57e7

Результат интеллектуальной деятельности: Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере. При этом осуществляют топологическую оптимизацию электронной 3D-модели детали с учетом конструктивных особенностей детали и схемы ее нагружения. Нагрев подложки осуществляют в течение 30-60 мин. При использовании никелевого или кобальтового сплава ее нагревают до 200°С, при использовании алюминиевого сплава – до 100°С, а сплавление осуществляют в среде азота или аргона. Обеспечивается сокращение массы деталей, повышение их тяговооруженности МГТД. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области машиностроения, а именно к способу изготовления деталей малоразмерных газотурбинных двигателей (МГТД), в частности, двигателей типов МГТД-20, МГТД-125 и МГТД-150, методом селективного лазерного сплавления и может быть использовано в авиадвигателестроении при производстве маршевого двигателя летательного аппарата.

Технология аддитивного производства для изготовления изделий авиационного назначения методом селективного лазерного сплавления (СЛС) осложнена необходимостью разработки таких режимов синтеза для авиационных сплавов, чтобы последующее синтезированное изделие обладало минимальной долей внутренних объемных дефектов, а также заданным качеством поверхности. Помимо разработки режима необходимо сконструировать и оптимизировать конструкцию изделия таким образом, чтобы обеспечить наибольшую эффективность его применения в силовых агрегатах летательных аппаратов и снизить их вес.

Известен способ изготовления компонента газотурбинного двигателя из металлического порошка, содержащий аддитивное изготовление компонента и его термическую обработку. Аддитивное изготовление компонента ведут в формовочной камере, в которую вводят науглероживающий газ. Термическую обработку полученного аддитивным изготовлением компонента ведут с обеспечением осаждения карбидов на границах его зерен (RU 2670827 С2, опубл. 25.10.2018 г. B22F 3/105).

К недостаткам вышеуказанного способа можно отнести использование науглероживающего газа, который приводит к осаждению карбидов на поверхности сплавляемых слоев, что может приводить к росту объемных дефектов, локализованных между слоями.

Известен способ получения изделий для высоких тепловых нагрузок для авиационных двигателей, который включает обеспечение первой области компонента первым металлическим материалом посредством генеративного лазерного процесса или создание первой области из первого металлического материала, затем создание второй области компонента из второго металлического материала. Способ дополнительно включает создание охлаждающего элемента на компоненте путем селективного лазерного спекания и/или селективной лазерной плавки посредством увеличения концентрации таких элементов, как медь и/или алюминий с высокой теплопроводностью и высоким коэффициентом линейного расширения в металлическом материале. (ЕР 2559787 А1, опубл. 20.02.2013 B23K 26/00).

К недостаткам вышеуказанного способа можно отнести невозможность промышленной реализации данного способа изготовления деталей ГТД на современных установках селективного лазерного сплавления.

Известен способ изготовления металлических изделий селективным лазерным спеканием, включающий первый этап, на котором порошковый материал засыпают в загрузочный бункер, закрывают герметичную камеру, откачивают воздух из герметичной камеры с помощью вакуумной системы, затем заполняют внутренний объем герметичной камеры инертным газом из блока подачи инертного газа до достижения заданного давления, включают систему циркуляции инертного газа, обеспечивают непрерывный обдув зоны сплавления порошкового материала и оптического оборудования лазерной системы через вентиляционные отверстия и производят нагрев основания с подложкой для формируемого изделия. После чего осуществляют второй этап, на котором подают порошковый материал из загрузочного бункера в среде инертного газа через шлюзовое устройство в дозатор, производят выгрузку и разравнивание заданного объема порошкового материала с помощью выравнивателя из дозатора на подложку, полученный слой облучают сфокусированным лазерным излучением в точках слоя, соответствующих поперечному сечению формируемого изделия по заданной программе в системе управления упомянутой установки, после завершения облучения опускают опору для поддержки формируемого изделия на величину толщины полученного слоя. Выравниватель перемещают в обратном направлении, затем операции второго этапа повторяют до полного формирования изделия. После чего осуществляют третий этап, на котором удаляют защитный газ из герметичной камеры, выравнивают давление в герметичной камере с атмосферным, открывают герметичную камеру и извлекают полученное изделие из камеры (RU 2717761 С1, опубл. 25.03.2020, B22F 3/105).

К недостаткам вышеуказанного способа можно отнести технологические трудности обеспечения равномерного слоя порошка при его нанесении с использованием вертикальной подачи, что ведет к увеличению количества объемных дефектов при синтезе изделия.

Наиболее близким аналогом заявленного изобретения является способ изготовления детали из хромсодержащего жаропрочного сплава на основе никеля, включающий послойное нанесение порошка хромсодержащего жаропрочного сплава на основе никеля на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали, горячее изостатическое прессование полученной детали в среде аргона и ее термическую обработку. Металлический порошок хромсодержащего жаропрочного сплава на основе никеля предварительно подвергают газодинамической сепарации с последующей дегазацией. Процесс сплавления слоев порошка лазерным лучом проводят в защитной атмосфере азота. Перед горячим изостатическим прессованием полученную деталь помещают в среду электрокорунда и стружки титана или титанового сплава без соприкосновения детали с упомянутой стружкой (RU 2623537, опубл. 27.06.2017 B23K 26/342).

Недостатком данного способа является отсутствие предварительной компьютерной обработки (топологической оптимизации) электронной 3D-модели детали газотурбинного двигателя, что не позволяет совершенствовать конструкцию детали, тем самым, снижая эффективность ее применения.

Технический результат заявленного изобретения заключается в разработке способа изготовления деталей малогабаритного газотурбинного двигателя с тягой до 150 кгс с повышенным показателем тяговооруженности за счет сокращения массы деталей посредством топологической оптимизации.

Заявленный технический результат достигается тем, что способ изготовления деталей малоразмерного газотурбинного двигателя селективным лазерным сплавлением включает в себя операции создания электронной 3D-модели детали при помощи системы твердотельного моделирования, проведения топологической оптимизации детали с учетом ее конструктивных особенностей и схемы нагружения, разделение оптимизированной 3D-модели детали на слои и экспортирование ее на оборудование, газодинамическую сепарацию и дегазацию порошка, послойное нанесение металлического порошка на подложку нагретую в течении 30-60 минут до 200°С и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере азота.

В варианте изготовления детали МГТД фронтовое устройство, корпус, сопло, направляющий аппарат, колесо турбины, корпус соплового аппарата дополнительно подвергают горячему изостатическому прессованию при давлении 100-200 МПа и температуре 1100-1200°С.

В варианте изготовления детали МГТД фронтовое устройство, корпус, сопло, направляющий аппарат, жаровая труба, камера сгорания, дно корпуса, корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышка устройства входа, крепление испарительных трубок дополнительно подвергают термической обработке.

В варианте изготовления деталей: корпус внешнего направляющего аппарата, корпус компрессора передний, спрямляющий аппарат, диффузор, устройство входа, крышка устройства входа, крепление испарительных трубок - в процессе сплавления слоев порошка осуществляют нагрев подложки до 100°С.

В варианте изготовления процесс сплавления слоев порошка лазерным лучом проводят в защитной атмосфере аргона.

В варианте изготовления металлический порошок выполнен из сплава на основе никеля или кобальта, или алюминия.

Топологическая оптимизация с учетом конструктивных особенностей и схемы нагружения после моделирования электронной 3D-модели детали позволяет снизить массу деталей МГТД с сохранением требуемых прочностных характеристик, тем самым обеспечить снижение веса и повышение тяговооруженности МГТД.

Газодинамическая сепарация металлического порошка позволяет исключить наличие в нем тонкой (агломерирующей) фракции менее 10 мкм, препятствующей равномерному нанесению на подложку, а также дефектных пористых гранул, внутри которых содержится локальный объем инертного газа аргона. Применение таких гранул в процессе лазерного сплавления приводит к структурной неоднородности (пористости) сплавленных слоев, что отрицательно сказывается на механических свойствах изготавливаемой детали. В большей степени достичь однородности сплавленных слоев можно используя порошки небольшого фракционного состава менее 63 мкм.

Дегазация металлического порошка жаропрочного сплава на основе фракционного состава менее 63 мкм позволяет удалить с поверхности частиц порошка адсорбированный кислород, который является вредной газовой примесью, приводящей к снижению механических свойств изготавливаемой детали.

С целью получения детали большей геометрической точности и высокими механическими свойствами предпочтительно использовать металлический порошок фракционного состава менее 63 мкм с содержанием кислорода менее 0,01 масс. %.

Дегазацию проводят посредством вакуумирования камеры, в которую помещен порошок, с последующим нагревом до температуры до 300°С и выдержке при ней в течение 2-6 ч.

Селективное сплавление (сканирование) порошка лазерным лучом лучше проводить со скоростью от 0,6 до 3,2 м/сек и мощностью лазера 150-600 Вт. Сочетание указанных скорости и мощности обеспечивает стабильный процесс изготовления деталей за счет полного расплавления сплавляемого слоя металлических порошков.

На подложку предпочтительно наносить слой порошка от 20 до 50 мкм.

В процессе изготовления каждое сечение формируемой детали разбивается на отдельные фрагменты, которые формируются с помощью лазерного сплавления металлического порошка, а при сплавлении следующего слоя детали шаг прохождения лазерного луча сдвигается. Это позволяет понизить термические напряжения, возникающие в процессе лазерного сплавления, за счет локализации внутренних напряжений сплавленного металла в небольшом участке и снижения их до минимума, что обеспечивает стабильность технологического процесса и изготовление детали заданной геометрической формы с высокой точностью.

Процесс селективного лазерного сплавления деталей из никелевого и кобальтового сплавов проводят с подогревом подложки до 200°С, для деталей из алюминиевого сплава - до 100°С. Эта операция направлена на снижение остаточных термических напряжений в деталях МГТД.

Проведение процесса горячего изостатического прессования детали, изготовленной селективным лазерным сплавлением металлического порошка жаропрочного сплава на основе никеля или кобальта, осуществляется при давлении 100-200 МПа и температуре 1100-1200°С, что обеспечивает эффективное снижение пористости синтезированного материала. Проведение процесса горячего изостатического прессования в среде электрокорунда и стружки титана или титанового сплава (стружка-газопоглотитель) обеспечивает уменьшение толщины окисленного слоя за счет снижения электрокорундом интенсивности циркуляции прессующей среды аргона у поверхности обрабатываемых деталей и поглощения из нее примесей кислорода стружкой-газопоглотителем, содержащей титан, имеющий высокое химическое сродство с кислородом. Во избежание высокотемпературного взаимодействия материала детали и стружки титана или титанового сплава во время горячего изостатического прессования деталь и стружка не должны соприкасаться, что достигается наличием в камере внутренней полости с полыми стенками, в которых находится смесь электрокорунда и стружки.

Заявленный способ осуществляется следующим образом. На первом этапе создается электронная 3D-модель при помощи системы твердотельного моделирования. Затем созданная электронная 3D-модель подвергается топологической оптимизации с учетом конструктивных особенностей и схемы нагружения в специальном программном обеспечении. После этого обработанная 3D-модель разделяется на слои и загружается в оборудование для трехмерной печати (3D-принтер). На втором этапе проводят предварительный подогрев подложки от 100 до 200°С в течении 30-60 минут, затем порошковый материал, толщина которого не превышает 50 мкм, распределяется тонким слоем на рабочей поверхности подложки. Лазер согласно заданным параметрам селективно осуществляет расплавление порошка в атмосфере азота или аргона для формирования первого слоя детали. После лазерного сплавления первого слоя металлического порошка подложка опускается на определенный уровень, наносится новый слой порошкового материала, и процесс многократно повторяется до завершения изготовления детали. При необходимости на третьем этапе проводится горячее изостатическое прессование и термическая обработка детали.

Детали МГТД, выполненные с применением заявленного способа, а также сплав, указаны в таблице №1.

По предложенному способу и прототипу была изготовлена камера сгорания двигателя МГТД-20. Масса деталей составила для предложенного способа - 330 г, для прототипа - 348 г. Эффективное снижение массы составило 5,2%.

По предложенному способу и прототипу был изготовлен диффузор двигателя МГТД-20. Масса деталей составила для предложенного способа - 135 г, для прототипа - 187 г. Эффективное снижение массы составило 27,8%.

По предложенному способу и прототипу был изготовлен корпус соплового аппарата МГТД-125/150. Масса деталей составила для предложенного способа - 803 г, для прототипа - 951 г. Эффективное снижение массы составило 15,6%.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 174.
27.04.2019
№219.017.3cf2

Крыло летательного аппарата с интегрированными солнечными панелями

Изобретение относится к области авиации, а именно к конструкции планеров летательных аппаратов, использующих в качестве силовой установки электродвигатели, функционирующие за счет энергии, получаемой с солнечных панелей, запасаемой в аккумуляторных батареях для полета в периоды недостаточной...
Тип: Изобретение
Номер охранного документа: 0002686350
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.47da

Чувствительный элемент из пьезокомпозита связности 1-3 и способ его изготовления

Группа изобретений относится к пьезоэлектрическим преобразователям типа керамика-полимер со связностью 1-3 и может быть использована для повышения приемной чувствительности гидроакустических антенн. Чувствительный элемент из пьезокомпозита связности 1-3 содержит стержни, выполненные из...
Тип: Изобретение
Номер охранного документа: 0002686492
Дата охранного документа: 29.04.2019
24.05.2019
№219.017.5d96

Способ получения полиэфирсульфонов

Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим...
Тип: Изобретение
Номер охранного документа: 0002688942
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc8

Ароматический огнестойкий полиэфирэфиркетон и способ его получения

Настоящее изобретение относится к огнестойким ароматическим полиэфирэфиркетонам. Описан ароматический огнестойкий полиэфирэфиркетон, характеризующийся строением:
Тип: Изобретение
Номер охранного документа: 0002688943
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5e87

Композиция для получения паропроницаемой пористой мембраны

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования для достижения требуемых показателей эксплуатационных свойств. Изобретение касается состава формовочного раствора для получения паропроницаемой мембраны, а также регулирования...
Тип: Изобретение
Номер охранного документа: 0002688625
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5f6e

Устройство и способ для экспериментального изучения и расширения временных границ сверхглубокой гипотермии

Группа изобретений относится к медицинской технике. Устройство для изучения устойчивости млекопитающих к сверхглубокой гипотермии и расширения предельных временных границ нахождения животного в состоянии сверхглубокой гипотермии включает платформу для закрепления на спине испытуемого животного,...
Тип: Изобретение
Номер охранного документа: 0002688722
Дата охранного документа: 22.05.2019
29.05.2019
№219.017.631b

Композиционный материал на основе полифениленсульфона и способ его получения

Изобретение относится к способу получения композиционного материала на основе полифениленсульфона, применяемого в качестве суперконструкционного полимерного материала для аддитивных 3D технологий. Способ получения композиционного материала заключается в том, что предварительно сухую смесь 75-85...
Тип: Изобретение
Номер охранного документа: 0002688140
Дата охранного документа: 20.05.2019
29.05.2019
№219.017.6385

Способ криоконсервации биологических образцов под давлением и устройство для его осуществления

Изобретение относится к области криоконсервации для обеспечения длительного хранения биологических образцов. Способ криоконсервации биологического образеца включает насыщение раствором криопротектора, размещение образца во внутреннем объеме камеры высокого давления, проведение витрификации...
Тип: Изобретение
Номер охранного документа: 0002688331
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.6388

Ароматические сополиэфирсульфонкетоны и способ их получения

Изобретение относится к способу получения ароматических сополиэфирсульфонкетонов (СПЭСК), которые могут быть использованы в качестве термо- и теплостойких конструкционных полимерных материалов. Первый вариант способа получения сополиэфирсульфонкетона заключается в том, что проводят реакцию...
Тип: Изобретение
Номер охранного документа: 0002688142
Дата охранного документа: 20.05.2019
30.05.2019
№219.017.6bad

Вычислительный модуль и способ обработки с использованием такого модуля

Изобретение относится к области вычислительной техники. Технический результат изобретения заключается в повышении производительности многопотоковых вычислений в вариативных задачах дискретной математики за счет параллельной работы специализированных процессорных элементов по общей программе с...
Тип: Изобретение
Номер охранного документа: 0002689433
Дата охранного документа: 28.05.2019
Показаны записи 71-80 из 364.
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb7

Волокнистый композиционный материал с матрицей на основе ниобия

Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения. Волокнистый композиционный материал содержит матрицу и...
Тип: Изобретение
Номер охранного документа: 0002568407
Дата охранного документа: 20.11.2015
+ добавить свой РИД