×
20.10.2015
216.013.832f

КОМПОЗИЦИОННЫЙ СЛОИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой выполнен с анодированной поверхностью и, по меньшей мере, один чередующийся со слоями алюминиевого сплава слой углепластика, включающий эпоксидное связующее и углеродные волокна. Между слоем алюминиевого сплава и слоем углепластика расположен антикоррозионный слой, выполненный с возможностью защиты от электрохимической коррозии, включающий наполнитель и вышеуказанное связующее. Изобретение обеспечивает создание композиционного слоистого материала с повышенной антикоррозионной стойкостью и высокими механическими характеристиками, с модулем упругости не менее, чем у алюминиевого сплава и высокой межслойной адгезией. 2 н. и 4 з.п. ф-лы, 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам и способам их получения. Его используют в изделиях конструкционного назначения, например для обшивки фюзеляжа, створок, люков и рулей управления и стабилизаторов транспортных и пассажирских самолетов с целью уменьшения массы конструкций и увеличения срока эксплуатации при увеличении надежности и безопасности эксплуатации конструкции.

Создание материалов, позволяющих существенно снизить массу, повысить ресурс и безопасность эксплуатации конструкций - важная и постоянно актуальная проблема для авиационной техники. Возможности традиционных методов совершенствования свойств авиационных материалов имеют определенные пределы. Так, для металлических сплавов при увеличении прочности за счет оптимизации состава и структуры не происходит существенного повышения выносливости и стойкости к усталостному разрушению. Рост прочности обычно сопровождается повышением чувствительности к концентраторам напряжений, что может служить причиной преждевременного разрушения конструкции.

Известны металлополимерные композиционные слоистые материалы, состоящие из слоев алюминиевого сплава и слоев полимерных композитов на основе стеклянных, арамидных или углеродных волокон. Эти материалы имеют повышенные механические свойства по сравнению с листами алюминиевого сплава, а также обладают высокой трещиностойкостью при усталостном разрушении. В настоящее время за рубежом такие материалы применяются в конструкции самолетов гражданской авиации, в частности в конструкции самолетов фирмы Airbus (А-380, А-350). Наиболее часто за рубежом используются слоистые металлополимерные композиционные материалы «алюминий-стеклопластик» под маркой GLARE, в Российской Федерации его аналогом являются материалы, выпускаемые под маркой СИАЛ. Слоистый материал СИАЛ содержит слои алюминиевого сплава и слои стеклопластика, армированного стеклянными волокнами (Патент РФ №2185964, опубликованный 27.07.2002 г. ). Главным преимуществом СИАЛ и GLARE является низкая скорость развития и распространения трещин. Недостатком является низкое значение модуля упругости (60-70 ГПа), которое не превышает значения модуля упругости алюминиевого сплава.

Известен композиционный слоистый материал АЛОР, который предназначен для изготовления элементов конструкции авиационной техники, например для изготовления силовых деталей планера. Материал содержит слои алюминиевого сплава и слои органопластика, армированного высокопрочными арамидными волокнами (Патент РФ №2185963, опубликованный 27.07.2002). Недостатком слоистого материала АЛОР является его склонность к поглощению влаги из-за способности арамидных волокон поглощать воду. Поскольку влага является катализатором коррозионных процессов, это способствует снижению коррозионной стойкости слоистого материала.

Известен слоистый композиционный материал «алюминий-углепластик», изготавливаемый за несколько технологических этапов. Сначала изготавливают слои углепластика, затем производят подготовку поверхности алюминиевого сплава анодированием в фосфорной кислоте и на последнем этапе совмещают слои алюминия и углепластика с помощью клея (Патент KR №20010053778, опубликованный 02.07.2001 г. ). Недостатком данного материала является наличие в нем высоких термических остаточных напряжений из-за различия коэффициентов линейного термического расширения слоев металла и углепластика, что снижает механические и усталостные характеристики материала. Кроме того, в таком композите присутствуют дополнительные границы раздела между углепластиком и клеем, что является слабым звеном и уменьшает надежность материала.

Известно технологическое решение в области слоистых металлополимерных композиционных материалах «алюминий-углепластик» (Австралия, Технологический Ин-т г. Мельбурна. Авторы: G. Freischmidt и др. доклад 1998 г. ), в котором представлены результаты испытаний металлополимерного композита «алюминий-углепластик»: плотность - 2,2 г/см3, прочность при растяжении - 803 МПа, а модуль упругости -75,7 ГПа.

Наиболее близким аналогом по составу к заявляемому изобретению технологическое решение по слоистому композиционному материалу, который представляет собой чередующиеся с углепластиком слои алюминиевого сплава, которые имеют анодированную поверхность, полученную в хромовой кислоте. Материал имеет следующие свойства: модуль при растяжении - 72 ГПа, плотность - 2,3 г/см3 (Бразилия, Ins. de Aeronautica е Espaco, г. Сан-Пауло. Авторы: Е.С. Botelho и др. Composites part В: engineering, v. 37 № 2-3, pp. 255-263, 2006).

Недостатком материала-прототипа является пониженная коррозионная стойкость из-за вероятности возникновения гальванической коррозии вследствие различия химических потенциалов алюминиевого сплава и углепластика. Кроме того, процесс анодирования поверхности алюминиевого сплава в хромовой кислоте является экологически небезопасным, так как использование Сr6 вредит окружающей среде и обладает канцерогенным эффектом.

Наличие на металле защитного анодно-окисного покрытия не является препятствием для возникновения электрического тока при контакте углепластика и алюминиевого сплава. Наиболее опасным с точки зрения электрохимической коррозии является контакт алюминиевых сплавов с углепластиками, разность потенциалов с которыми достигает 1,5 В, при этом в большей степени уязвимы места контакта плоскостей из углепластика и алюминиевых сплавов и места постановки крепежа. Вода, которая поглощается полимерным композиционным материалом за счет адсорбции атмосферной влаги, также способствует возникновению коррозионных процессов. Для обеспечения коррозионной стойкости алюминиевого сплава в составе композита «алюминий-углепластик» в течение длительного хранения и эксплуатации, в процессе которых материал может подвергаться отрицательному воздействию климатических условий и различных коррозионных сред, необходимо исключить возможность возникновения электрохимического взаимодействия между листами алюминиевого сплава и слоями углепластика. Для обеспечения коррозионной стойкости использован разделительный антикоррозионный слой из стеклопластика на основе стеклянной ткани и связующего.

Техническим результатом предложенного изобретения является создание композиционного слоистого материала с повышенной антикоррозионной стойкостью и высокими механическими характеристиками, с модулем упругости не менее, чем у алюминиевого сплава, и высокой межслойной адгезией.

Для достижения технического результата предложен состав композиционного слоистого материала и способ его получения, а именно композиционный слоистый материал, содержащий, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой выполнен с анодированной поверхностью и, по меньшей мере, один чередующийся со слоями алюминиевого сплава слой углепластика, включающий эпоксидное связующее и углеродные волокна, при этом между слоем алюминиевого сплава и слоем углепластика расположен антикоррозионный слой, выполненный с возможностью защиты от электрохимической коррозии, включающий наполнитель, выполненный из стеклоткани, и вышеуказанное эпоксидное связующее.

Композиционный слоистый материал может содержать слои алюминиевого сплава, выполненные из высокопрочного алюминиевого сплава.

Композиционный слоистый материал может содержать углеродные волокна, которые являются высокопрочными (карбонизированные волокна с температурой термообработки до 1500°C) или высокомодульными (графитизированные волокна с температурой термообработки до 2800°C).

Композиционный слоистый материал может содержать объемное содержание эпоксидного связующего в слое углепластика 35-45%.

Композиционный слоистый материал может иметь анодированную поверхность алюминиевого сплава, полученную путем анодирования в комбинированном электролите с наполнением в танине.

Способ получения композиционного слоистого материала заключается в том, что пропитывают эпоксидным связующим углеродные волокна и антикоррозионный слои, формируют заготовку композиционного слоистого материала путем послойной выкладки слоев алюминия, углепластика и антикоррозионного слоев, а затем осуществляется автоклавное формование или прессование указанной заготовки за один цикл прессования или автоклавного формования.

Использование антикоррозионных слоев с тем же эпоксидным связующим, что и в слое углепластика, позволяет создать градиентный переход между материалами различной химической природы и обладающими различными модулями упругости (алюминиевыми и углепластиковыми слоями). Благодаря этому создаются условия для обеспечения совместной работы слоев алюминиевого сплава и углепластика при механическом нагружении и уменьшения межслойных напряжений. Кроме создания градиентного перехода от углепластика к алюминиевому сплаву антикоррозионный слой выполняет задачу обеспечения надежной защиты алюминиевых слоев от электрохимической коррозии, предотвращая непосредственный контакт алюминиевого сплава и углепластика. В составе антикоррозионного слоя использовано тоже эпоксидное связующее, что и в слоях углепластиков, - это упрощает технологический процесс изготовления композита, благоприятно влияет на свойства слоистого композиционного материла, такие как адгезия между слоями и механические характеристики.

Использование в качестве подготовки поверхности анодно-окисного покрытия, наносимого в комбинированном электролите с наполнением в танине, обеспечивает экологическую безопасность технологического процесса и обеспечивает высокие адгезионные характеристики при создании слоистого металлополимерного композиционного материала «алюминий-углепластик».

Для изготовления заявляемого металлополимерного композиционного материала используется метод совместного формования пакета, состоящего из слоев алюминиевого сплава, слоев пропитанных эпоксидным связующим углеродного наполнителя и слоев, пропитанных эпоксидным связующим стеклянного наполнителя. Изготовление материала за одну технологическую операцию позволяет получать более монолитный и стабильный материал с менее дефектной структурой.

Примеры осуществления

Пример 1

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,02 мм и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава Д16-АТ выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава Д16-АТ также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 1000÷1100 МПа, модуль упругости при растяжении входит в диапазон 90÷100 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,03. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 2

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м с четырьмя разделительными слоями стеклопластика толщиной 0,06 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава Д16-АТ выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава Д16-АТ также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжении входит в диапазон 40÷55 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,05. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 3

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава В95-АТ2 (опытный образец) толщиной 0,3 мм, двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,02 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава В95-АТ2 выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава В95-АТ2 также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 100÷1100 МПа, модуль упругости при растяжении входит в диапазон 90÷100 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,03. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 4

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава В95-АТ2 (опытный образец) толщиной 0,3 мм, двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,06 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава В95-АТ2 выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава В95-АТ2 также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷600 МПа, модуль упругости при растяжении входит в диапазон 40÷60 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,05. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 5

Композиционный слоистый материал состоит: из двух листов алюминиевого сплава Д16-АТ (ГОСТ 4784-84) толщиной 1 мм, одного слоя углепластика толщиной 0,14 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с двумя разделительными слоями стеклопластика толщиной 0,02 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава Д16-АТ выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжении входит в диапазон 65÷70 ГПа.

У всех примеров изобретения отсутствовали какие-либо признаки поражения слоев алюминия электрохимической коррозией. В качестве алюминиевого слоя могут быть использованы другие алюминиевые сплавы (например, сплавы 1163, 1420 и др.).

В таблице 1 приведены составы заявляемого слоистого композиционного материала по примерам 1-5.

Указанное изделие может производиться доступными методами и на имеющемся оборудовании.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 367.
10.01.2013
№216.012.18ce

Клеевая композиция

Изобретение относится к клеевой композиции для крепления резин на основе полярных и неполярных каучуков между собой и к металлам в изделиях авиационной, автомобильной промышленности и судостроения. Клеевая композиция включает бутадиеннитрильный каучук, фенолоформальдегидный олигомер,...
Тип: Изобретение
Номер охранного документа: 0002471842
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18fb

Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении. Проводят насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости...
Тип: Изобретение
Номер охранного документа: 0002471887
Дата охранного документа: 10.01.2013
20.04.2013
№216.012.36e0

Эпоксидная композиция холодного отверждения

Изобретение относится к области создания двухкомпонентных эпоксидных композиций холодного отверждения для изготовления препрегов, которые могут быть использованы в строительстве, а также в авиационной, машиностроительной, судостроительной и других областях техники. Предлагаемая эпоксидная...
Тип: Изобретение
Номер охранного документа: 0002479601
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3a7d

Состав для получения защитного покрытия на стальных деталях

Изобретение относится к химической поверхностной обработке стальных деталей и может быть использовано при изготовлении валов газотурбинных двигателей, шасси вертолетов и других деталей для защиты от коррозии при эксплуатации в различных климатических условиях, в том числе при повышенных...
Тип: Изобретение
Номер охранного документа: 0002480534
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.489a

Сплав на основе титана

Изобретение относится к цветной металлургии, а именно к производству титановых сплавов, и может быть использовано в конструкциях, работающих при температурах до 650°С, например для деталей корпуса и статорных лопаток компрессора высокого давления газотурбинных двигателей. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002484166
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.489b

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида NiАl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С....
Тип: Изобретение
Номер охранного документа: 0002484167
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5951

Способ изготовления полых изделий из композиционных материалов

Изобретение относится к области технологии формования конструкций из полимерных композиционных материалов, предназначенных для изготовления быстровозводимых арочных мостов, при сооружении тоннелей, ангаров и других строительных конструкций. Согласно способу заполняют газом надувную внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002488486
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.59cf

Эпоксидная композиция для изготовления изделий из полимерных композиционных материалов методом вакуумной инфузии

Изобретение относится к эпоксидным композициям холодного отверждения и может быть использовано для изготовления конструкций, в том числе крупногабаритных, из полимерных композиционных материалов (ПКМ) методом вакуумной инфузии в областях техники. Эпоксидная композиция включает эпоксидную...
Тип: Изобретение
Номер охранного документа: 0002488612
Дата охранного документа: 27.07.2013
27.08.2013
№216.012.6531

Устройство для неразрушающего контроля труднодоступных элементов конструкции

Использование: для неразрушающего контроля труднодоступных элементов конструкции. Сущность: заключается в том, что устройство для неразрушающего контроля труднодоступных элементов конструкции включает приводной блок, имеющий, по крайней мере, один магнит, расположенный на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002491542
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.670a

Способ получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией

Изобретение относится к металлургии. Способ включает отливку монокристаллической заготовки произвольной кристаллографической ориентации, ее травление на макроструктуру, определение ориентации заготовки как угла между ее геометрической осью и плоскостью выбранной кристаллографической ориентации,...
Тип: Изобретение
Номер охранного документа: 0002492025
Дата охранного документа: 10.09.2013
Показаны записи 1-10 из 336.
10.01.2013
№216.012.18ce

Клеевая композиция

Изобретение относится к клеевой композиции для крепления резин на основе полярных и неполярных каучуков между собой и к металлам в изделиях авиационной, автомобильной промышленности и судостроения. Клеевая композиция включает бутадиеннитрильный каучук, фенолоформальдегидный олигомер,...
Тип: Изобретение
Номер охранного документа: 0002471842
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18fb

Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении. Проводят насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости...
Тип: Изобретение
Номер охранного документа: 0002471887
Дата охранного документа: 10.01.2013
20.04.2013
№216.012.36e0

Эпоксидная композиция холодного отверждения

Изобретение относится к области создания двухкомпонентных эпоксидных композиций холодного отверждения для изготовления препрегов, которые могут быть использованы в строительстве, а также в авиационной, машиностроительной, судостроительной и других областях техники. Предлагаемая эпоксидная...
Тип: Изобретение
Номер охранного документа: 0002479601
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3a7d

Состав для получения защитного покрытия на стальных деталях

Изобретение относится к химической поверхностной обработке стальных деталей и может быть использовано при изготовлении валов газотурбинных двигателей, шасси вертолетов и других деталей для защиты от коррозии при эксплуатации в различных климатических условиях, в том числе при повышенных...
Тип: Изобретение
Номер охранного документа: 0002480534
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.489a

Сплав на основе титана

Изобретение относится к цветной металлургии, а именно к производству титановых сплавов, и может быть использовано в конструкциях, работающих при температурах до 650°С, например для деталей корпуса и статорных лопаток компрессора высокого давления газотурбинных двигателей. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002484166
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.489b

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида NiАl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С....
Тип: Изобретение
Номер охранного документа: 0002484167
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5951

Способ изготовления полых изделий из композиционных материалов

Изобретение относится к области технологии формования конструкций из полимерных композиционных материалов, предназначенных для изготовления быстровозводимых арочных мостов, при сооружении тоннелей, ангаров и других строительных конструкций. Согласно способу заполняют газом надувную внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002488486
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.59cf

Эпоксидная композиция для изготовления изделий из полимерных композиционных материалов методом вакуумной инфузии

Изобретение относится к эпоксидным композициям холодного отверждения и может быть использовано для изготовления конструкций, в том числе крупногабаритных, из полимерных композиционных материалов (ПКМ) методом вакуумной инфузии в областях техники. Эпоксидная композиция включает эпоксидную...
Тип: Изобретение
Номер охранного документа: 0002488612
Дата охранного документа: 27.07.2013
27.08.2013
№216.012.6531

Устройство для неразрушающего контроля труднодоступных элементов конструкции

Использование: для неразрушающего контроля труднодоступных элементов конструкции. Сущность: заключается в том, что устройство для неразрушающего контроля труднодоступных элементов конструкции включает приводной блок, имеющий, по крайней мере, один магнит, расположенный на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002491542
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.670a

Способ получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией

Изобретение относится к металлургии. Способ включает отливку монокристаллической заготовки произвольной кристаллографической ориентации, ее травление на макроструктуру, определение ориентации заготовки как угла между ее геометрической осью и плоскостью выбранной кристаллографической ориентации,...
Тип: Изобретение
Номер охранного документа: 0002492025
Дата охранного документа: 10.09.2013
+ добавить свой РИД