×
15.05.2023
223.018.5739

Результат интеллектуальной деятельности: Способ синтеза нанокомпозитов NiCoCu/C на основе полиакрилонитрила

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре 25÷50°С и следующем соотношении компонентов (% мас): полиакрилонитрил 4,23-4,38, диметилформамид 84,62-87,53, Со(СНСОО)⋅4HO 3,58-3,70, Ni(CHCOO)⋅4HO 3,59-3,71, (CHCOO)Cu⋅HO 0,69-3,98, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания при температуре 25÷70°С и инфракрасный нагрев полученного твердого остатка в два этапа при давлении 10÷10мм рт.ст., причем предварительный нагрев проводят в течение 5÷15 минут при температуре 100÷200°С со скоростью нагрева не более 20°С/мин, а финальный нагрев проводят в течение 5÷15 минут при температуре 500÷700°С со скоростью нагрева не более 50°С/мин. Технический результат изобретения заключается в упрощении технологии получения нанокомпозита NiCoCu/C с улучшением его характеристик, а также снижении энергетических затрат в процессе проведения способа. 8 ил., 2 табл., 5 пр.

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава) в составе нанокомпозитов NiCoCu/C на основе полиакрилонитрила.

Аналогом предложенного изобретения является способ синтеза наночастиц NiCoCu (Liqianyun Xu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Ahmed A. Al-Ghamdi, S.Wageh Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-CoCu multicomponent electrode, Journal of Materials Science & Technology Volume 78, 10 July 2021, Pages 100-109), в котором синтезированы нанокомпозиты, содержащие частицы NiCoCu гидротермальным методом. Для синтеза нанокомпозитов получали совместный раствор NiN2O6⋅6H2O, CoN2O6⋅6H2O, H2O, C2H7NO2 и CO(NH2)2. Затем к вышеуказанному раствору добавляли волокна CuH полученные химическим травлением. Полученный раствор помещали в автоклав и выдерживали при 120°С в течение 240 минут. Диаметр полученных волокон составлял 200÷250 нм.

Недостатки метода заключаются в размере получаемых наночастиц и необходимости предварительного синтеза волокон меди.

Наиболее близким аналогом является способ синтеза (P.V. Gaikwad, R.J. Kamble, S.J. Mane-Gavade, S.R. Sabale, P.D. Kamble, Magneto-structural properties and photocatalytic performance of sol-gel synthesized cobalt substituted Ni-Cu ferrites for degradation of methylene blue under sunlight, Physica B: Condensed Matter Volume 554, 1 February 2019, Pages 79-85), в котором были получены мелкодисперсные порошки Ni0,5-xCoxCu0,5Fe2O4 (х от 0,0 до 0,5), нано-кристаллический материал, включающий NiCoCu, был получен золь-гель методом. Для синтеза использовались нитраты металлов и мочевина, растворенные в дистиллированной воде в стехиометрических пропорциях. Затем рН раствора поддерживали от 9,0 до 9,5 с помощью аммиака. Смесь постепенно нагревали при 100°С при постоянном перемешивании в течение 180 мин до получения геля. Затем высушенный гель сжигали для получения порошка. Приготовленные порошки феррита прокаливали при 850°С в течение 300 мин для достижения оптимальной кристаллизации. В результате были получены кристаллиты Ni0,5-xCoxCu0,5Fe2O4 размером от 35,5 до 44,3 нм. Увеличение концентрации Со от 0 до 0,5 в соединении Ni0,5-xCoxCu0,5Fe2O4 приводило к увеличению намагниченности насыщения от 21,74 до 41,82 emu/g, коэрцитивная сила изменялась в диапазоне от 81 до 302 Э.

Недостатками данного способа являются образование наночастиц в виде оксидов, что значительно ухудшает магнитные характеристики наноком-позита, и более энергетически затратный процесс финального отжига.

Технической задачей является получение упрощенной технологии синтеза нанокомпозита NiCoCu/C.

Технический результат изобретения заключается в упрощении технологии получения нанокомпозита NiCoCu/C с улучшением его характеристик, а также снижении энергетических затрат в процессе проведения способа.

Технический результат достигается следующим образом.

Способ синтеза нанокомпозита NiCoCu/C включает приготовление совместного раствора полиакрилонитрила, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O, (CH3COO)2Cu⋅H2O в диметилформамиде при температуре 25÷50°С и следующем соотношении компонентов (% масс.):

полиакрилонитрил 4,23 - 4,38,
диметилформамид 84,62 - 87,53,
Со(СН3СОО)2⋅4H2O 3,58 - 3,70,
Ni(CH3COO)2⋅4H2O 3,59 - 3,71,
(CH3COO)2Cu⋅H2O 0,69 - 3,98,

последующую выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания при температуре 25÷70°С, инфракрасный нагрев полученного твердого остатка в два этапа при давлении 10-2÷10-3 мм.рт.ст, причем предварительный нагрев проводят в течение 5÷15 минут при температуре 100÷200°С со скоростью нагрева не более 20°С/мин, а финальный нагрев проводят в течение 5÷15 минут при температуре 500÷700°С со скоростью нагрева не более 50°С/мин.

Технический результат изобретения достигается за счет проведения ИК нагрева в одном процессе без использования дополнительных внешних восстановителей, а также сочетания в способе одновременного синтеза наночастиц сплава NiCoCu размером от 10 до 70 нм и углеродной матрицы, защищающей наночастицы сплава NiCoCu от коалесценции и сохраняющей их свойства на воздухе.

Изобретение поясняется чертежом, где на фигурах 1 и 2 показаны дифрактограммы и результаты фазового анализа нанокомпозита NiCoCu/C, синтезированного при температурах 500°С и 700°С соответственно; на фигурах 3, 5, 7 приведены дифрактограммы и результаты фазового анализа нанокомпозита NiCoCu/C с концентрациями ацетата меди 5, 15 и 30 масс. % соответственно; на фигурах 4, 6, 8 представлены по одной из серий микрофотографий нанокомпозита NiCoCu/C с концентрациями ацетата меди 5, 15 и 30 масс. % соответственно, методом просвечивающей электронной микроскопии (ПЭМ).

Изобретение осуществляется следующим образом.

При проведении синтеза выбирают определенные исходные компоненты: полиакрилонитрил (ПАН), соединения металлов (Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O, (CH3COO)2Cu⋅H2O, а также условия проведения процесса растворения компонентов и процесса удаления растворителя, ИК-нагрева полученного твердого остатка Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O, (CH3COO)2Cu⋅H2O, ПАН при давлении в реакционной камере Р=10-2÷10-3 мм.рт.ст. Режим температурной обработки разделяют на два этапа: 1) при температуре T=100÷200°С, в течение 5÷45 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева до 20°С/мин; 2) при финальной температуре 500÷700°С в течение 5÷15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева до 50°С/мин, в результате чего формируется металлоуглеродный нанокомпозит NiCoCu/C, содержащий наночастицы NiCoCu с размером от 10 до 70 нм.

Для анализа фазового состава нанокомпозита и определения размера наночастиц NiCoCu использован рентгеновский дифрактометр EMMA (Австралия), излучение Cu, графитовый монохроматор, а также Дифрей 401 с Cr-излучением. Для прямого измерения размеров наночастиц использован электронный микроскоп LEO912 АВ OMEGA, ускоряющее напряжение 60 -120 кВ, увеличение 80х - 500000х. Средний размер наночастиц интерметал-лида NiCoCu рассчитан по результатам РФА из дифрактограмм по уравнению Дебая-Шерера:

где k - константа, равная 0,89;

В - полуширина дифракционного угла, соответственного дифракционного максимума, град,

- длина волны рентгеновского Cu - излучения,

Θ - дифракционный угол, град.

Размер наночастиц оценивался по микрофотографиям проб нанокомпозита, полученным методом просвечивающей электронной микроскопии (ПЭМ).

Пример 1. Готовится 80 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=5 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=3,382 г, mNi(CH3COO)2⋅4H2O=3,392 г, m(CH3COO)2CuH2O=0,628 г, mПАН=4 г; а также в коническую колбу наливается 80 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 500°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В процессе ИК-нагрева твердого остатка Со(СН3СОО)2⋅4H2O/Ni(CH3COO)2⋅4H2O/(СН3СОО)2Cu⋅H2O/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Со, Ni и Cu из соединения, а за счет дальнейшего взаимодействия формируются наночастицы интерметаллида NiCo-Cu. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит NiCoCu/C в виде черного порошка.

По данным РФА определен фазовый состав нанокомпозита, полученного при финальной температуре, равной 500°С, рассчитан средний размер области когерентного рассеяния интерметаллида, а также определен параметр решетки, равный

Пример 2. Готовится 80 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=5 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=3,382 г, mNi(CH3COO)2⋅4H2O=3,392 г, m(CH3COO)2CuH2O=0,628 г, mПАН=4 г; а также в коническую колбу наливается 80 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 700°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, полученного при финальной температуре, равной 700°С, рассчитан средний размер области когерентного рассеяния интерметаллида, а также определен параметр решетки, равный

Пример 3. Готовится 20 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=5 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=0,845 г, mNi(CH3COO)2⋅4H2O=0,848 г, m(CH3COO)2CuH2O=0,157 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 600°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита с концентрацией ацетата меди 5 масс. %, рассчитан средний размер области когерентного рассеяния интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц NiCoCu. Средний размер наночастиц составил 10±1 нм.

Пример 4. Готовится 20 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=15 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo mCo(CH3COO)2⋅4H2O=0,845 г, mNi(CH3COO)2⋅4H2O=0,848 г, m(CH3COO)2CuH2O=0,471 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 600°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным ПЭМ образца с концентрацией ацетата меди 15 масс. % рассчитан средний размер наночастиц интерметаллида, который составил 11 ±1 нм.

Пример 5. Готовится 20 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=30 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=0,845 г, mNi(CH3COO)2⋅4H2O=0,848 г, m(CH3COO)2CuH2O=0,942 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 600°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным ПЭМ образца с концентрацией ацетата меди 30 масс. % рассчитан средний размер наночастиц интерметаллида, который составил 16±1 нм.

Таким образом, установлено, что с увеличением температуры финального отжига происходит увеличение параметра решетки интерметаллида. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры областей когерентного рассеяния и параметры решеток NiCoCu в зависимости от температуры финального отжига (таблица 1).

Таким образом, установлено, что с увеличением концентрации меди происходит увеличение размера наночастиц NiCoCu. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры областей когерентного рассеяния и параметры решеток NiCoCu в зависимости от концентрации меди (таблица 2).

Источник поступления информации: Роспатент

Показаны записи 161-170 из 322.
13.02.2018
№218.016.22ce

Способ повышения тягового усилия локомотива

Изобретение относится к рельсовому железнодорожному транспорту, в частности к способам повышения тяговых усилий локомотива. Способ повышения тягового усилия локомотива включает подачу песка под ведущие колеса локомотива непосредственно в место контакта ведущего колеса с рельсом в момент начала...
Тип: Изобретение
Номер охранного документа: 0002641957
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.268e

Способ получения акриловой кислоты

Изобретение относится к одностадийному способу газофазного окисления пропана с образованием акриловой кислоты в присутствии смешанного металлоксидного катализатора в избытке кислорода воздуха по отношению к пропану. Изобретение также относится к области электротехники и может быть...
Тип: Изобретение
Номер охранного документа: 0002644158
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2694

Способ получения адаптивного износостойкого покрытия ti-al-mo-n для защиты от изнашивания в меняющихся условиях трения

Изобретение относится к составам и способам получения износостойких покрытий для защиты от изнашивания и может быть использовано в парах трения в машиностроении, металлообработке и нефтедобыче. Способ получения износостойкого покрытия на основе TiN с добавлением Мо методом PVD на твердосплавном...
Тип: Изобретение
Номер охранного документа: 0002644094
Дата охранного документа: 07.02.2018
13.02.2018
№218.016.2707

Промежуточный ковш для непрерывной разливки стали

Изобретение относится к области металлургии и может быть использовано при обработке стали инертным газом в промежуточном ковше. В промежуточном ковше (3) установлена огнеупорная рафинирующая перегородка (1), разделяющая его полость на приемную (4) и разливочную (5) камеры. Перегородка (1) имеет...
Тип: Изобретение
Номер охранного документа: 0002644095
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2bc3

Радиоизотопный механо-электрический генератор

Изобретение относится к радиоизотопным механо-электрическим генераторам с пьезоэлектрическим кантилевером. Устройство включает отдельно расположенный радиоизотопный источник постоянного напряжения в виде плоскопараллельного конденсатора, одна обкладка которого, закрепленная на первой...
Тип: Изобретение
Номер охранного документа: 0002643151
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2dd8

Способ фракционирования полидисперсных смесей нано- и микрочастиц

Изобретение относится к области фракционирования полидисперсных смесей нано- и микрочастиц и может быть применено для выделения фракций частиц заданного размерного диапазона. Согласно способу фракционирования полидисперсных смесей нано- и микрочастиц суспензию смеси частиц, приготовленную на...
Тип: Изобретение
Номер охранного документа: 0002643539
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2f1a

Способ определения термостойкости углей к их циклическому замораживанию и оттаиванию

Изобретение относится к метрологии, в частности к способам определения термостойкости углей при их циклическом замораживании и оттаивании. Сущность: осуществляют циклическое замораживание и оттаивание однотипных образцов углей при числе М циклов, равном порядковому номеру соответствующего...
Тип: Изобретение
Номер охранного документа: 0002644615
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5b

Электролизер

Изобретение относится к электролизеру для электрохимического осаждения цинка электролизом водных растворов. Электролизер содержит корпус с расположенными внутри него монополярными электродами - анодами и катодами, и средство периодического реверса тока, выполненное в виде дополнительных...
Тип: Изобретение
Номер охранного документа: 0002644715
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2ff1

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению электродов из высоколегированных сплавов на основе алюминидов никеля. Способ включает получение полуфабриката методом центробежного СВС-литья с использованием реакционной смеси, содержащей оксид никеля, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002644702
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.304a

Способ отделения продукта углеродных нанотрубок от углерод-катализаторного композита

Изобретение относится к нанотехнологии и может быть использовано при изготовлении армирующих добавок для композиционных материалов и функциональных покрытий. Углерод-катализаторный композит измельчают до крупности -44 мкм и репульпируют в воде при соотношении Т : Ж = 1:3 при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002644893
Дата охранного документа: 14.02.2018
Показаны записи 11-14 из 14.
20.02.2019
№219.016.c03a

Способ получения термостабильного нанокомпозита cu/полиакрилонитрил

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН). Описан способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl, HNO (С=37%) и ПАН (М=1×10), выдерживание до растворения CuCl и ПАН в HNO, выпаривание...
Тип: Изобретение
Номер охранного документа: 0002330864
Дата охранного документа: 10.08.2008
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
19.06.2019
№219.017.89e3

Способ получения нанокомпозита feni/пиролизованный полиакрилонитрил

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/пиролизованный полиакрилонитрил (ППАН). Способ получения нанокомпозита включает приготовление раствора FeCl·6НО, NiCl·6НО и ПАН (М=1·10) в диметилформамиде (ДМФА), выдерживание до растворения FеCl·6НO, NiCl·6HO и ПАН в ДМФА,...
Тип: Изобретение
Номер охранного документа: 0002455225
Дата охранного документа: 10.07.2012
+ добавить свой РИД