Вид РИД
Изобретение
Изобретение относится к медицине, а именно к диагностике частоты сердечных сокращений (ЧСС) и частоты дыхательных движений (ЧДД).
Известны способ и устройство кардиографического исследования сердца путем измерения ЧСС и частоты дыхательных движений (ЧДД), позволяющие создание надежного метода для комплексного физиологического обследования людей, работающих в стрессорных условиях, с целью оперативной оценки их функционального состояния, (см. патент РФ №№73772, от 16.08.2007, МПК А61В 5/02)). Путем измерения и анализа указанных параметров создают единый комплекс с взаимно согласованными критериями оценки, которые совместно дают возможность определить адаптационные возможности организма и степень напряжения и функциональные резервы регуляторных систем.
Известно также устройство для диагностики дыхательной и сердечнососудистой деятельности человека, и дистанционной передачи частоты сердечных сокращений, путем зондирования электромагнитным излучением, направленного в область расположения сердца (см патент РФ №128091, от 08.08.2012 МПК А61В 5/0402, А61В 5/08), включающее блок съема и передачи сигнала, представляющее собой регистратор с пятью пьезодатчиками для регистрации ЭКГ и тензодатчиком для регистрации дыхания, усилитель биопотенциалов, аналого-цифровой преобразователь, интерфейс и плату для кодирования и передачи цифрового сигнала в виде радиосигнала для передачи через блок приема и преобразования радиосигнала в ЭКГ и респираторный потенциал, включающий Bluetooth адаптер и Router, блок обработки и хранения параметров дыхания и ЭКГ, расположенный на расстоянии 1000 м от блока съема и передачи сигнала, включающего ноутбук, для отображенияя результатов анализа записи ЭКГ и дыхания, графики с результатами ЭКГ и дыхания.
Недостатком данных способов является отсутствие возможности работы дистанционно, необходим непосредственный контакт с человеком.
Задачей предложенного решения является дистанционный бесконтактный метод диагностики параметров ЧСС и ЧДД, характеризующих жизненно важные показатели работы сердца, и расширение возможностей за счет использования определения параметров в реальном времени, увеличение дальности измерений и увеличение точности измерений.
Для реализации поставленной задачи в способе измерения ЧСС и ЧДД человек облучается дистанционно радиочастотным излучением, находящимся на любом расстоянии от него, не используя датчики (электроды), установленные непосредственно на пациенте или в его окружении. Способ измерения ЧСС и ЧДД заключается в следующем: зондирующим радиолокационным сигналом облучается человек, находящийся в контролируемой зоне. Затем по отраженному сигналу от человека определяется расстояние R между человеком и приемной антенной. Из-за дыхания и сокращения сердца происходит изменение дистанции R. Типичные параметры амплитуды смещения поверхности тела из-за дыхания составляет от 1 мм до 12 мм, из-за сердцебиения, что определят параметр ЧДД, который лежит в пределах от 0.1 мм до 0.5 мм. Для измерения этих мелкомасштабных изменений R, используется изменение фазы радиолокационного сигнала во времени. Как известно, изменение расстояния связанно с изменением фазы сигнала (Ширман Я.Д. (ред.). Теоретические основы радиолокации. - М.: Советское радио, 1970) по формуле Δϕ=4πλ*ΔR (1), где λ - длина волны радиолокационного сигнала, ΔR - изменение расстояния.
Измеряя изменения фазы Δϕ во времени, согласно формуле (1), определяются изменения расстояния. Как видно из формулы (1), чем меньше длина волны радиолокационного сигнала, тем выше чувствительность к изменению смещения до поверхности тела человека, соответственно, и чувствительность к смещению до поверхности тела человека, соответственно, и чувствительность к смещению дистанции связанной с ЧСС и ЧДД. Измеряя изменения Δϕ во времени формируется полоса частот, в которой располагается информация о ЧСС и ЧДД. Затем с помощью полосовой фильтрации, выделяется полоса частот соответствующая ЧСС, а затем выделяется полоса частота соответствующая ЧДД. Экспериментально обнаружено, что большая полоса частот соответствует ЧСС (полоса частот сердечных сокращений лежит в диапазоне от 0.8 Гц до 2 Гц), а меньшая - соответствует ЧДД (полоса частот дыхательных движений лежит в диапазоне от 0.1 Гц до 0.5 Гц).
Для реализации указанного способа предложен радиолокационный измеритель ЧСС и ЧДД, содержащий передающий тракт, включающий облучатель в виде генератора управляемого напряжения, усилителя мощности, передающей антенны, соединенных последовательно, и приемного тракта, состоящего из последовательно соединенных, приемной антенны, малошумящего усилителя, смесителя, усилителя промежуточной частоты, выход которого подключен блоку цифровой обработки информации, при этом второй вход смесителя подключен к второму выходу генератора управляемого напряжения передающего тракта. Далее блок цифровой обработки информации выведен к потребителю.
Изобретение поясняется чертежом, где показан радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений. Радиолокационный измеритель содержит передающий тракт 1, включающий облучатель в виде генератора 2 управляемого напряжением, усилитель 3 мощности, передающую антенну 4, соединенных последовательно. Прием радиочастотного излучения осуществляется приемной антенной 5, соединенной через малошумящий усилитель 6 с первым входом смесителя 7, выход которого подключен к усилителю 8 промежуточной частоты (ПЧ), выход усилителя 8 ПЧ подключен к блоку 9 цифровой обработки информации, при этом второй выход генератора 2 управляемого напряжения передающего тракта подключен к второму входу смесителя 7.
Далее блок 9 цифровой обработки информации выведен к потребителю.
Передающая и приемная антенны могут быть выполнены в виде микрополосковой или линзовой антенны.
Функционирование радиолокационного измерителя ЧСС и ЧДД заключается в следующем: В передающем тракте 1 формируется зондирующий радиочастотный сигнал, посредством антенны 4 облучается человек, находящийся в контролируемой зоне.
Принятый антенной 5 сигнал усиливается в малошумящем усилителе 6, на смеситель подается высокочастотный полезный сигнал, который понижается путем вычитания сигнала частоты гетеродина от генератора 2. В результате чего сигнал преобразуется на промежуточную частоту на выходе смесителя 7. Сигнал на промежуточной частоте с выхода смесителя 7 поступает в усилитель промежуточной частоты 8, где усиливается. Усиленный сигнал промежуточной частоты поступает в блок цифровой обработки сигналов 9. В блоке цифровой обработки сигналов 9 сигнал оцифровывается и подвергается цифровой обработке на основе математических преобразований, которые позволяют вычислить ЧСС и ЧДД.
Возможно одновременное круглосуточное исследование ЧСС и ЧДД бесконтактным способом и на расстоянии.
На выходе устройства выдается значения ЧСС и ЧДД.
Метод является безопасным для здоровья пациентов, т.к. выходная мощность передатчика соответствует требованиям СанПиН 2.2.4/2.1.8.055-96. Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ).
Таким образом, используя радиолокационный метод дистанционно, не внося контактные датчики на тело человека, так и вокруг него, возможно получить данные, свидетельствующие об измеряемых ЧСС и ЧДД.
Кроме того увеличивается чувствительность и точность измерений, т.к. измерение расстояний перенакладываются на измерение фазы радиолокационного сигнала (чем меньше длина волны радиочастотного сигнала, тем выше чувствительность к изменению смещения до поверхности тела человека), соответственно, и чувствительность к смещению до поверхности тела человека, соответственно, и чувствительность к смещению дистанции связанной с ЧСС и ЧДД.