×
14.05.2023
223.018.5588

Результат интеллектуальной деятельности: Способ построения космической системы ретрансляции информации между земными станциями и абонентскими терминалами

Вид РИД

Изобретение

№ охранного документа
0002738263
Дата охранного документа
11.12.2020
Аннотация: Изобретение относится к технике связи и может использоваться в космических системах ретрансляции информации между лунными станциями., которые могут быть размещены как на поверхности Луны, так и на окололунной орбите, и земными станциями управления и приема/передачи сообщений с использованием геостационарных спутников-ретрансляторов (СР). Технический результат состоит в обеспечении возможности непрерывной связи между абонентскими терминалами, находящимися на видимых с Земли участках лунной поверхности или окололунных орбит, и абонентами Земли. Для этого антенну спутника ретранслятора для связи с абонентскими терминалами, находящимися на видимых с Земли участках поверхности Луны и окололунных орбит, располагают на противоположной от направления на Землю стороне СР и рассчитывают угол отклонения оси диаграммы направленности указанной антенны, отсчитываемый от оси, соединяющей СР с центром Земли и ориентированной в направлении от центра Земли. 1 з.п. ф-лы, 4 ил.

Изобретение относится к космическим системам ретрансляции информации между лунными станциями, которые могут быть размещены как на поверхности Луны, так и на окололунной орбите, и земными станциями управления и приема/передачи сообщений с использованием геостационарных спутников-ретрансляторов (СР).

Способ построения космической системы ретрансляции информации между земными станциями и абонентскими терминалами (АТ) изложен, например, в патенте № 2366086 РФ «Способ построения космической системы ретрансляции с использованием геосинхронных спутников-ретрансляторов» и статье Кузовникова А.В., Мухина В.А., Выгонского Ю.Г., Головкова В.В., Роскина С.М. «Многофункциональная космическая система ретрансляции «Луч» – новая российская система для оперативного информационного обмена с низкоорбитальными космическими аппаратами» // Наукоемкие технологии, № 9, т.15, 2014, с.20 – 23. По совокупности признаков способ, описанный в статье, выбран в качестве прототипа. В соответствии с данным способом формируют орбитальную группировку из N геостационарных СР, где N ≥ 2, и соединяют каждый из СР по меньшей мере с одной земной станцией.

Недостатком рассмотренного способа является то, что создаваемая в соответствии с ним космическая система ретрансляции (КСР) предназначена для работы с АТ, расположенными на видимых со спутников-ретрансляторов участках земной поверхности и околоземных орбит. Поэтому предложенные в данном способе места расположения антенн СР для связи с АТ (в дальнейшем – антенн абонентского направления) и пределы углов отклонения осей диаграмм направленности указанных антенн, в частности, при связи с АТ на низкоорбитальных космических аппаратах, обусловлены в первую очередь необходимостью обслуживания именно данного класса АТ. Что касается возможности охвата орбиты Луны, то из-за ориентации антенн СР абонентского направления в сторону Земли и ограниченного сектора отклонения их лучей (не более 22о х 22о) каждый из СР может «видеть» участок орбиты Луны размером немногим более 4о.

Для заявленного способа выявлены следующие общие существенные признаки: Способ построения космической системы ретрансляции информации между наземными станциями и абонентскими терминалами, при котором формируют орбитальную группировку из N геостационарных спутников-ретрансляторов, где N ≥ 2, соединяют каждый из спутников-ретрансляторов, по меньшей мере, с одной наземной станцией.

Технической проблемой предполагаемого изобретения является разработка способа, обеспечивающего для КСР на базе геостационарных СР возможность непрерывной связи с абонентскими терминалами, находящимися на видимых с Земли участках лунной поверхности или окололунных орбит.

Указанная проблема решается тем, что антенну СР для связи с АТ, находящимися на видимых с Земли участках поверхности Луны и окололунных орбит, располагают на противоположной от направления на Землю стороне СР, угол отклонения оси диаграммы направленности указанной антенны, отсчитываемый от оси, соединяющей СР с центром Земли и ориентированный в направлении от центра Земли, устанавливают: в плоскости земного экватора – не менее ±θэ = 90о – arc tg {[(LЛП – RОАТ – RГСО)/( LЛП – RОАТ + RГСО)] ctg(φмакс/4)} + φмакс/4, где LЛП – расстояние между Землей и Луной в перигее лунной орбиты, RОАТ – радиус сферы возможных положений лунных АТ, RГСО – радиус геостационарной орбиты, φмакс – максимальное угловое разнесение между точками стояния соседних СР, и в меридиональной плоскости – не менее ±θм = 90о – arc tg {[(LЛП – RГСО)/( LЛП + RГСО)] ctg[(28,77о + α)/4]} + (28,77о + α)/4, где α = arc sin(RОАT/LЛП). При этом угловое разнесение между точками стояния спутников-ретрансляторов устанавливают равным 180/N.

Сущность предполагаемого изобретения поясняется фиг.1 ÷ 4, где:

- на фиг.1 приведены геометрические построения для определения угла отклонения оси диаграммы направленности антенны СР абонентского направления в плоскости земного экватора;

- на фиг.2 приведены геометрические построения для определения угла отклонения оси диаграммы направленности антенны СР абонентского направления в меридиональной плоскости;

- на фиг.3 показано расположение на СР антенны абонентского направления, обеспечивающей связь лунными АТ;

- на фиг.4 представлен общий вид космической системы ретрансляции для связи лунных АТ с Землей.

На фиг.1 ÷ 4 введены следующие обозначения:

1 – Земля;

2 – геостационарная орбита;

3 – орбита Луны;

4 – Луна;

5 – сфера возможных положений лунных АТ;

6 – плоскость эклиптики;

7 – плоскость земного экватора;

8 – плоскость орбиты Луны;

9 – Солнце;

10 – СР;

11 – антенна для связи с земной станцией;

12 – антенна для связи с лунными АТ;

13 – западный СР;

14 – центральный СР;

15 – восточный СР;

16 – антенный луч для связи с Землей;

17 – зона покрытия антенного луча для связи с Землей;

18 – антенный луч для связи с Луной;

19 – зона покрытия антенного луча для связи с Луной.

На фиг.1, плоскость которой совпадает с плоскостью земного экватора (и с плоскостью геостационарной орбиты), показана Земля 1, ее геостационарная орбита (ГСО) 2 радиусом RГСО и орбита Луны 3, все с центрами в точке О. В качестве примера рассматривается орбитальная группировка КСР, состоящая из двух СР в точках А и В ГСО 2. Областью размещения обслуживаемых данной КСР лунных АТ является видимая с Земли часть пространства между поверхностью Луны 4 и сферой возможных положений лунных АТ 5, радиус которой определяется максимальным радиусом орбиты окололунного АТ RОАТ. Точка С является ближайшим к Земле 1 местом расположения АТ на сфере 5.

Для удобства дальнейшего анализа по другую сторону Земли 1 симметрично точке С введена аналогичная точка D, упомянутые выше точки размещения СР А и В расположены симметрично относительно линии CD, а орбита Луны 3 полагается круговой радиусом RОЛ.

В качестве исходной предпосылки принимаем, что для обеспечения непрерывной связи с лунными АТ каждый из двух СР должен быть способным охватывать половину орбиты Луны 3, т.е. в данном случае СР в точке А должен обслуживать лунные АТ при движении Луны 4 из точки Е в точку F, а СР в точке В – при движении Луны 3 из точки F в точку Е. Как следует из фиг.1, в плоскости земного экватора это обеспечивается при условии, если, во-первых, антенна СР для связи с АТ будет располагаться на противоположной от направления на Землю 1 стороне СР, а во-вторых, если ось диаграммы направленности этой антенны будет способна перемещаться в пределах сектора обзора, выходящего за пределы верхней полусферы СР. Угловой размер этого сектора определяется, как видно из приведенных на фиг.1 геометрических построений, величиной угла θэ, который связан с величиной максимального углового разнесения φмакс между точками стояния СР А и В. Согласно соотношениям между сторонами и углами треугольников [Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗов. М., Наука, 1967. – 608 с., с.187] для треугольника АОС, у которого известны две стороны: АО = RГСО и ОС = RОЛ – RОЛТ = L, а также угол между ними равный φмакс/2, искомый угол θэ, как смежный по отношению к углу САО будет определяться следующим выражением:

. (1)

Поскольку в реальности Луна 4 движется вокруг Земли 1 по эллиптической орбите [Кононович Э.В., Мороз В.И. Общий курс астрономии: Учебное пособие / Под ред. В.В. Иванова. Изд. 2-е, испр. М.: Едиториал УРСС, 2004. – 544 с., с.116], соответственно и значение L будет изменяться от минимального при нахождении Луны 4 в перигее ее орбиты 3 до максимального при нахождении Луны 4 в апогее ее орбиты 3. Как видно из фиг.1, с уменьшением расстояния L значение угла θэ возрастает, поэтому максимальное значение этого угла соответствует минимальному значению L, которое равно расстоянию между центрами Земли и Луны при нахождении последней в перигее ее орбиты LЛП за вычетом радиуса сферы возможных положений лунных АТ, т.е. Lмин = LЛП – RОАТ. Таким образом, конечное выражение для угла отклонения оси диаграммы направленности антенны СР абонентского направления в плоскости земного экватора относительно оси, соединяющей СР с центром Земли и ориентированной в направлении от центра Земли, примет следующий вид:

. (2)

Для определения угла отклонения оси диаграммы направленности антенны СР абонентского направления в меридиональной плоскости, или плоскости, перпендикулярной плоскости земного экватора, обратимся к фиг.2, на которой показано взаимное расположение проекций плоскости эклиптики 6, плоскости земного экватора 7 и плоскости орбиты Луны 8 на плоскость чертежа, совпадающую с плоскостью, перпендикулярной плоскости эклиптики 6, и проходящей через большую ось орбиты Луны 3 (или через центр Земли 1 в точке О и центр Луны 4 в точке Е на фиг.1). Плоскость орбиты Луны 8 постоянно наклонена к плоскости эклиптики 6 под углом iЛ, максимальное значение которого составляет 5о20’ [Кононович Э.В., Мороз В.И. Общий курс астрономии: Учебное пособие, с.116]. Плоскость орбиты Земли (не показана) лежит в плоскости эклиптики 6, в то же время из-за наклона земной оси относительно плоскости эклиптики 6 плоскость земного экватора 7 наклонена к плоскости эклиптики 6 под углом iЗ = 23о26’ [Кононович Э.В., Мороз В.И. Общий курс астрономии: Учебное пособие, с.26].

Вследствие постоянных изменений элементов орбиты Луны 3, в частности, долготы ее перигея и долготы восходящего узла, а также изменения пространственного положения плоскости земного экватора 7 относительно Солнца 9 можно представить, как показано на фиг.2, что максимальный угловой разнос между плоскостью земного экватора 7 и плоскостью орбиты Луны 8 будет равен сумме наклонений указанных плоскостей к плоскости эклиптики 6, т.е. iЗ + iЛ = 23о26’ + 5о20’ = 28о46’ ≈ 28,77о.

Максимальное значение угла отклонения оси диаграммы направленности антенны СР абонентского направления в меридиональной плоскости θм для СР, находящегося в точке G будет равно значению угла между плоскостью земного экватора 7 (плоскостью ГСО) и направлением на точку нахождения АТ Н на окололунной орбите 5.

Для нахождения угла θм рассмотрим треугольник OGH, в котором сторона OG равна радиусу ГСО RГСО, сторона OH может быть принята равной длине перигея орбиты Луны 8 ОЕ (так как ОН >> RОАТ), а угол GOH между этими сторонами равен сумме углов iЗ + iЛ + α = 28,77о + α, где α = arc sin (RОАТ / LЛП). Тогда искомый угол θм как смежный по отношению к углу OGH определяется с применением метода, принятого для нахождения угла θэ, т.е.:

(3)

где α = arc sin (RОАТ / LЛП). Так же, как и угол θэ, угол θм отсчитывается относительно оси, соединяющей СР с центром Земли и ориентированной в направлении от центра Земли.

Рассмотренные выше рассуждения относительно значения угла θэ были применены к орбитальной группировке СР с некоторым произвольным угловым разнесением между ними. Однако, как можно заметить из фиг.1, минимальное значение угла θэ может быть достигнуто при равном угловом разнесении между точками стояния СР, равном 180/N.

В плане возможной реализации предполагаемого изобретения на фиг.3 показан схематический вид СР 10 и связанной с ним сателлитоцентрической системы координат XYZ, в которой ось Х направлена на центр Земли, ось Y совпадает с направлением движения СР 10, а ось Z перпендикулярна плоскости чертежа, совпадающей с плоскостью земного экватора (плоскостью ГСО), и направлена вверх. СР 10 оснащен антенной 11 для связи с земной станцией и антенной 12 для связи с лунными АТ. Антенна 11 расположена на обращенной к Земле стороне СР 10 и является антенной радиочастотного диапазона, оптимального для прохождения сигналов через атмосферу Земли. Антенна 12 располагается на противоположной от направления на Землю стороне СР 10 и поскольку она предназначена для связи исключительно в космическом пространстве, то она может работать не только в радио, но и в оптическом диапазоне волн. Использование для связи с лунными АТ высокочастотных диапазонов позволяет уменьшить габариты связной аппаратуры как самих АТ, так и СР.

В верхней части фиг.3 на координатных осях показаны углы отклонения оси диаграммы направленности антенны 12 в плоскости земного экватора (плоскости XOY) ±θэ и в меридиональной плоскости (плоскости XOZ) ±θм, отсчитываемых относительно оси –Х.

На фиг.4 представлен пример построения космической системы ретрансляции для обслуживания лунных АТ, включающей орбитальную группировку из трех спутников-ретрансляторов, условно обозначенных как: «восточный» СР 13, «центральный» СР 14 и «западный» СР 15, обращающихся вокруг Земли 1 по геостационарной орбите 2. Каждый из СР 13 – 15 формирует с помощью антенны 11 антенный луч для связи с Землей 16. Каждый из лучей 16 формирует на поверхности Земли 1 зону покрытия 17, в пределах которой размещается земная станция (не показана). Из приведенного на фиг.4 состава орбитальной группировки СР наиболее благоприятные условия для связи с лунными АТ (наименьшая дальность связи) имеет СР 14, который с помощью антенны 12 формирует антенный луч 18, направленный в сторону Луны 4 и образующий на ее поверхности зону покрытия 19, в которой размещается лунный АТ (не показан).

В качестве примера определим значения углов отклонения антенны СР для связи с АТ 12 применительно к орбитальной группировке существующей многофункциональной космической системы ретрансляции «Луч», в которой три СР располагаются в следующих точках стояния на ГСО: «западный» СР – 16о з.д.; «центральный СР – 95о в.д. и «восточный» СР – 167о в.д. [см.прототип]. При указанных позициях СР максимальное угловое разнесение между СР («западным» и «восточным») составляет:

Подставив в формулу (2) полученное значение φмакс, а также значения лунного перигея LЛП = 363 тыс. км, радиуса орбиты лунного АТ RОАТ ≈ 1940 км (при радиусе Луны 1736,7 км и высоте полета АТ около 200 км) и радиуса ГСО RГСО = 42 164 км, получим угол отклонения оси диаграммы направленности антенны 12 СР в экваториальной плоскости θэ = ±95,2о. Далее, введя соответствующие данные (LЛП, RОАТ и RГСО) в формулу (3), получим угол отклонения оси диаграммы направленности антенны 12 СР в меридиональной плоскости θм = ±16,4о. Полученные значения углов отклонения являются вполне реализуемыми для современного уровня техники.

В то же время при использовании орбитальной группировки из трех СР с одинаковым угловым разнесением 120о получим значение угла θэ = ±66,1о.

Таким образом, использование предлагаемого способа обеспечивает для КСР на базе геостационарных СР полный охват лунной орбиты, тем самым предоставляя возможность для непрерывной связи с абонентскими терминалами, находящимися на видимых с Земли участках лунной поверхности или окололунных орбит.

По результатам проведенного авторами анализа известной патентной и научно-технической литературы не обнаружена совокупность признаков, эквивалентных (или совпадающих) с признаками данного предполагаемого изобретения, поэтому заявители склонны считать техническое решение отвечающим критерию «новизна».

Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
23.05.2020
№220.018.204f

Способ изготовления гибко-плоского электронагревателя

Изобретение относится к области космического и транспортного машиностроения и может быть использовано при изготовлении гибких, плоских, гибко-плоских электронагревателей. Применяют способ изготовления гибко-плоского электронагревателя, включающий сборку основания, состоящего из слоев гибкой...
Тип: Изобретение
Номер охранного документа: 0002721624
Дата охранного документа: 21.05.2020
06.08.2020
№220.018.3cf1

Система терморегулирования космического аппарата

Изобретение относится к системе терморегулирования (СТР) космического аппарата. СТР содержит два замкнутых независимых жидкостных тракта с теплоносителем (один из них служит резервным). Каждый тракт включает в себя терморегулятор расхода теплоносителя с чувствительным элементом, радиатор,...
Тип: Изобретение
Номер охранного документа: 0002729149
Дата охранного документа: 04.08.2020
06.08.2020
№220.018.3d08

Модуль полезной нагрузки космического аппарата

Изобретение относится к космической технике, а более конкретно к модулям полезной нагрузки космического аппарата (МПН КА). МПН КА установлен на центральную часть космического аппарата. Состоит из двух опорных панельных конструкций, служащих для своего закрепления на центральной части КА и для...
Тип: Изобретение
Номер охранного документа: 0002729148
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.4268

Способ сборки космического аппарата

Изобретение относится к области космической техники и может быть использовано при изготовлении космических аппаратов (КА). Способ сборки КА включает установку на центральную часть космического аппарата в плоскостях +YОZ и -YОZ опорных панельных конструкций. На указанных конструкциях закреплены...
Тип: Изобретение
Номер охранного документа: 0002764473
Дата охранного документа: 17.01.2022
20.05.2023
№223.018.66ab

Способ сборки унифицированной платформы космического аппарата

Изобретение относится области космической техники, а именно к способу сборки корпуса унифицированной платформы космического аппарата (УПКА). Способ сборки УПКА заключающийся в том, что сборку платформы проводят при вертикальном положении стоек. Нижние части силовой конструкции (СК) соединяют с...
Тип: Изобретение
Номер охранного документа: 0002761958
Дата охранного документа: 14.12.2021
20.05.2023
№223.018.66b1

Способ соединения базовой и приборных панелей модуля полезной нагрузки космического аппарата

Изобретение относится к области космической техники, а более конкретно к сборке космических аппаратов (КА). Предлагается способ соединения базовой и приборных панелей модуля полезной нагрузки КА с помощью дискретных узлов крепления, при котором узлы крепления выполняют в виде рычажных...
Тип: Изобретение
Номер охранного документа: 0002761973
Дата охранного документа: 14.12.2021
27.05.2023
№223.018.70df

Устройство обработки аналоговых сигналов с применением цифровой фильтрации

Изобретение относится к информационно-вычислительной технике. Технический результат направлен на снижение помех обработанного сигнала. Устройство обработки аналоговых сигналов с применением цифровой фильтрации содержит входные защитные фильтры, датчик температуры, источник эталонного...
Тип: Изобретение
Номер охранного документа: 0002777306
Дата охранного документа: 02.08.2022
27.05.2023
№223.018.70ff

Корпус космического аппарата блочно-модульного исполнения

Изобретение относится к космической технике, в частности создания телекоммуникационных космических аппаратов (КА). Корпус КА блочно-модульного исполнения состоит из корпуса модуля служебных систем (МСС), корпуса модуля полезной нагрузки (МПН). По осям ±Y в плоскостях XOZ установлены две опорные...
Тип: Изобретение
Номер охранного документа: 0002775790
Дата охранного документа: 11.07.2022
05.06.2023
№223.018.771c

Способ подготовки поверхности металлических фитингов к склеиванию с профилем из композиционного материала

Способ относится к авиационной и аэрокосмической технике, а именно к соединениям с помощью клея деталей, охватывающая одна другую, в частности для соединений, работающих в высоконагруженных каркасных конструкциях, например каркасах батарей солнечных, штангах, рефлекторах, состоящих из...
Тип: Изобретение
Номер охранного документа: 0002775768
Дата охранного документа: 08.07.2022
05.06.2023
№223.018.772d

Способ коррекции орбитального движения космического аппарата

Изобретение относится к управлению движением космического аппарата (КА). В предлагаемом способе определяют корректирующие ускорения () от работы двигателей коррекции (ДК), используя телеметрическую информацию (ТМИ) от системы ориентации и стабилизации КА. До включения ДК из ТМИ (с астроприборов...
Тип: Изобретение
Номер охранного документа: 0002767794
Дата охранного документа: 22.03.2022
Показаны записи 1-9 из 9.
27.12.2013
№216.012.923a

Многофункциональная космическая система ретрансляции для информационного обмена с космическими и наземными абонентами

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокой, например, геостационарной орбите и предназначено для преимущественного использования в глобальных космических системах ретрансляции и связи, осуществляющих информационный обмен с космическими и...
Тип: Изобретение
Номер охранного документа: 0002503127
Дата охранного документа: 27.12.2013
20.07.2014
№216.012.de61

Способ управления многолучевым покрытием зоны обслуживания в спутниковой системе с использованием спутников-ретрансляторов на высокоэллиптической орбите

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокоэллиптических орбитах. Технический результат состоит в повышении эффективности использования бортовой приемопередающей аппаратуры спутника-ретранслятора, участвующей в формировании многолучевого покрытия...
Тип: Изобретение
Номер охранного документа: 0002522715
Дата охранного документа: 20.07.2014
20.12.2014
№216.013.11cc

Система ориентации навигационного спутника

Изобретение относится к управлению ориентацией искусственного спутника Земли (ИСЗ) с панелями солнечных батарей (ПСБ). Согласно предложенному способу осуществляют необходимые развороты ИСЗ вместе с ПСБ и, отдельно, ПСБ - вокруг первой и второй осей. При этом антенну ИСЗ ориентируют на Землю, а...
Тип: Изобретение
Номер охранного документа: 0002535979
Дата охранного документа: 20.12.2014
10.08.2015
№216.013.6b09

Способ мониторинговой коллокации на геостационарной орбите

Изобретение относится к управлению движением группы (кластера) космических аппаратов (КА), преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными. Сумма эксцентриситетов орбит...
Тип: Изобретение
Номер охранного документа: 0002558959
Дата охранного документа: 10.08.2015
26.08.2017
№217.015.d812

Способ компоновки приемной системы геостационарного космического аппарата для связи с низкоорбитальными объектами ракетно-космической техники

Изобретение относится к бортовому оборудованию геостационарных космических аппаратов (КА) для ретрансляции данных между низкоорбитальными КА и центрами управления и приема сообщений. На антенной штанге (14) вблизи рефлектора (13) параболической антенны закреплены с помощью установочных плит...
Тип: Изобретение
Номер охранного документа: 0002622426
Дата охранного документа: 19.06.2017
18.05.2019
№219.017.5932

Способ построения глобальной спутниковой системы ретрансляции информации между низкоорбитальными космическими аппаратами и наземными приемопередающими станциями с использованием спутников-ретрансляторов на геостационарной орбите

Изобретение относится к области радиосвязи с применением геостационарных спутников-ретрансляторов (СР). Техническим результатом является обеспечение глобального обслуживания геостационарными СР низкоорбитальных космических аппаратов (НКА) в любой точке их возможного местонахождения на орбите....
Тип: Изобретение
Номер охранного документа: 0002412547
Дата охранного документа: 20.02.2011
12.09.2019
№219.017.ca0f

Способ установления оптимального значения эквивалентной изотропно излучаемой мощности передающей системы космического аппарата на низкой круговой орбите для связи со спутником-ретранслятором на высокой круговой орбите, оснащенным приемной антенной с узким управляемым лучом

Изобретение относится к космическим системам ретрансляции информации между низкоорбитальными космическими аппаратами и центрами управления и приема сообщений с использованием высокоорбитальных, преимущественно геостационарных спутников-ретрансляторов. Технический результат состоит в разработке...
Тип: Изобретение
Номер охранного документа: 0002699821
Дата охранного документа: 11.09.2019
24.10.2019
№219.017.da31

Способ автономной коллокации на околостационарной орбите

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния. Один из КА работает в режиме автономной (или само-) коллокации (КАСК). Рабочую позицию КАСК выбирают рядом (по долготе)...
Тип: Изобретение
Номер охранного документа: 0002703696
Дата охранного документа: 21.10.2019
16.06.2023
№223.018.7b8b

Способ построения космической системы ретрансляции и связи

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокоэллиптических и геостационарной орбитах и предназначено для преимущественного использования в космических системах ретрансляции и связи. Технический результат состоит в разработке способа построения...
Тип: Изобретение
Номер охранного документа: 0002755019
Дата охранного документа: 09.09.2021
+ добавить свой РИД