×
12.09.2019
219.017.ca0f

Результат интеллектуальной деятельности: СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ

Вид РИД

Изобретение

№ охранного документа
0002699821
Дата охранного документа
11.09.2019
Аннотация: Изобретение относится к космическим системам ретрансляции информации между низкоорбитальными космическими аппаратами и центрами управления и приема сообщений с использованием высокоорбитальных, преимущественно геостационарных спутников-ретрансляторов. Технический результат состоит в разработке способа, обеспечивающего установление минимально необходимых параметров передающей системы низкоорбитального космического аппарата, представляемых в виде эквивалентной изотропно излучаемой мощности, за счет учета особенностей передачи информации по межспутниковой линии на высокоорбитальный спутник-ретранслятор. Для достижения указанной цели значения протяженности межспутниковой линии и шумовой температуры приемной системы спутника-ретранслятора вычисляют для порогового значения угла отклонения линии визирования «космический аппарат - спутник-ретранслятор» от направления «СР - центр Земли» , где R - радиус Земли, R - радиус орбиты CP, h - минимально допустимая высота прохождения межспутниковой линии над поверхностью Земли. 4 ил., 1 табл.

Изобретение относится к космическим системам ретрансляции информации между абонентскими станциями, в роли которых выступают низкоорбитальные космические аппараты (КА), и центрами управления и приема сообщений с использованием высокоорбитальных, преимущественно геостационарных спутников-ретрансляторов (CP).

Способ установления значения эквивалентной изотропно излучаемой мощности (ЭИИМ) передающей системы абонентских станций космических систем связи и передачи данных изложен, например, в справочнике Спутниковая связь и вещание: Справочник. - 3-е изд., перераб. и доп. / В.А. Бартенев, Г.В. Болотов, В.Л. Быков и др; под. ред. Л.Я. Кантора. - М.: Радио и связь, 1997. - с. 149-154 [1] и в сборнике задач Теплякова И.М. Телекоммуникационные системы: Сборник задач: Учебное пособие - М: ИП «РадиоСофт», 2008. - с. 116-118. По совокупности используемых параметров радиолинии способ, описанный в [1], выбран в качестве прототипа. В соответствии с данным способом ЭИИМ КА устанавливается определением:

- отношения энергии бита к спектральной плотности шума Еб/No в радиолинии связи между абонентской станцией и CP, исходя из требования к коэффициенту битовой ошибки для выбранной сигнально-кодовой структуры;

- длины волны несущей λ и скорости передачи информации R;

- коэффициента усиления приемной антенны CP, например, по оси диаграммы направленности ,

- дополнительных потерь в радиолинии L;

- протяженности радиолинии D;

- шумовой температуры приемной системы CP ;

и вычислением по формуле:

где k - постоянная Больцмана.

Входящие в выражение (1) суммарные потери сигнала для спутниковой радиолинии связи с земным абонентом, в общем случае, включают в себя потери на распространение в свободном пространстве (первый сомножитель указанного выражения), зависящие от протяженности радиолинии D, и дополнительные потери L, содержащие потери в атмосферных газах La и гидрометеорах , а также потери из-за несогласованности поляризаций передающей и приемной антенн .

Для удобства анализа такие виды потерь, как потери в фидерных трактах и из-за ошибок наведения передающей и приемной антенн здесь и далее будут считаться учтенными в значениях ЭИИМА, и .

Протяженность спутниковой радиолинии D при связи с земным абонентом зависит от радиуса орбиты CP RСР и угла места связи β (Спилкер Дж. Цифровая спутниковая связь. Пер. с англ. / Под ред. В.В. Маркова - М.: Связь, 1979. - с. 144):

где RЗ - радиус Земли.

Потери в атмосферных газах могут быть представлены как:

где и - коэффициенты погонного поглощения в кислороде и парах воды, соответственно, ho - высота земного абонента над уровнем моря.

Потери в гидрометеорах зависят от коэффициента погонного поглощения в них и эквивалентной длины пути сигнала в зоне присутствия гидрометеоров :

где F(ε) - коэффициент, учитывающий неравномерность пространственного распределения интенсивности гидрометеоров, a - эквивалентная толщина зоны присутствия гидрометеоров [1, с. 155-156].

Потери из-за несогласованности поляризаций передающей и приемной антенн Ln зависят от значений коэффициента эллиптичности антенн и угла между соответствующими полуосями эллипсов поляризации передающей и приемной антенн ψ. Значение последнего определяется выражением:

где - частота несущей сигнала [1, с. 167-169].

Таким образом, на основании анализа выражений (1÷5) можно сделать вывод о том, что перечисленные выше составляющие суммарных потерь сигнала при связи земного абонента с CP имеют четко выраженную зависимость от угла места β следствием которой является рост указанных потерь с уменьшением данного угла.

Поэтому при расчете спутниковых линий связи с земными абонентами, когда находящиеся в зоне обслуживания спутниковой антенны абоненты должны работать при различных (или изменяющихся в процессе эксплуатации) углах места, выбирают такое значение ЭИИМ земного абонента, при котором необходимые скорость и качество передачи информации обеспечивались бы даже при минимальном значении угла места β, т.е. при наихудших во всех отношениях для земных абонентов условиях связи. Т.е., выбор значения ЭИИМ земного абонента осуществляется по принципу «гарантированного результата» (Вентцель Е.С.Исследование операций: задачи, принципы, методология. - 2-е изд. стер. - М.: Наука. Гл. ред. физ. - мат. лит., 1988 - с. 39).

Недостатком рассмотренного способа является то, что он разработан применительно к радиолиниям спутниковой связи с земными абонентами и в нем не учитываются особенности связи между низкоорбитальным КА и высокоорбитальным CP (межспутниковой связи). Это приводит, как будет показано ниже, к завышенной оценке ЭИИМ КА, необходимой для передачи информации с заданной скоростью и качеством.

Задачей предлагаемого изобретения является разработка способа, обеспечивающего установление минимально необходимых параметров передающей системы низкоорбитального КА за счет учета особенностей передачи информации по межспутниковой линии (МСЛ) на высокоорбитальный СР.

Поставленная цель достигается тем, что в способе установления оптимального значения эквивалентной изотропно излучаемой мощности передающей системы космического аппарата на низкой круговой орбите для связи со спутником-ретранслятором на высокой круговой орбите, оснащенным приемной антенной с узким управляемым лучом, при котором задают значения энергопотенциала межспутниковой линии как отношения энергии бита Еб к спектральной плотности шумов No на выходе приемной системы спутника-ретранслятора, исходя из требований к скорости передачи данных и к коэффициенту битовой ошибки для выбранной сигнально-кодовой структуры, а также длины волны λ, скорости передачи информации R и коэффициента осевого усиления приемной антенны спутника-ретранслятора , определяют дополнительные потери в межспутниковой линии L, связанные, например, с рассогласованием эллипсов поляризации передающей антенны космического аппарата и приемной антенны спутника-ретранслятора, ошибками взаимного наведения указанных антенн, протяженность межспутниковой линии D и шумовую температуру приемной системы спутника-ретранслятора , вычисляют эквивалентную изотропно излучаемую мощность космического аппарата, как , где k - постоянная Больцмана, согласно изобретению значения протяженности межспутниковой линии и шумовой температуры приемной системы спутника-ретранслятора вычисляют для порогового значения угла отклонения линии визирования «космический аппарат - спутник-ретранслятор» от направления «СР - центр Земли» , где RЗ - радиус Земли, RСР - радиус орбиты CP, h - минимально допустимая высота прохождения межспутниковой линии над поверхностью Земли.

Сущность предполагаемого изобретения поясняется фиг. 1÷4, где:

- на фиг. 1 приведены геометрические построения для определения зависимости протяженности МСЛ от угла отклонения линии визирования «КА - СР» от направления «СР - центр Земли» δ;

- на фиг. 2 представлены возможные варианты ориентации приемной антенны СР при организации МСЛ;

- на фиг. 3 приведены графики зависимости протяженности МСЛ и шумовой температуры приемной системы СР от угла отклонения δ;

- на фиг. 4 приведены графики, иллюстрирующие характер зависимости ЭИИМ КА от угла отклонения δ при различных подходах к установлению данного параметра.

На фиг. 1÷4 введены следующие обозначения:

1 - земной шар;

2 - сфера возможных положений КА;

3 - диаграмма направленности приемной антенны СР;

4 - место размещения КА на сфере его возможных положений;

5 - тепловое излучение Земли.

Принципиальным отличием МСЛ от линии связи «земная станция - СР» является то, что она проходит вне земной атмосферы и ее протяженность, а значит и потери в свободном пространстве, зависят не от угла места β, а от угла δ, характеризующего отклонение линии визирования «КА - СР» от направления «СР - центр Земли». Для определения этой зависимости обратимся к фиг. 1 (верхний чертеж), на которой показаны проекции земного шара 1 (окружность радиусом RЗ) и сферы возможных положений КА 2 (окружность радиусом RКА). Точка А является местом нахождения СР, а точка В - произвольным местом нахождения КА, соответственно линия АВ обозначает МСЛ.

В соответствии с теоремой косинусов можно записать:

где θ - вспомогательный центральный угол, который исходя из представленных геометрических построений равен:

После подстановки (7) в (6) и проведения соответствующих преобразований, получим следующее квадратное уравнение:

решением которого является:

Проанализируем полученный результат с помощью нижнего чертежа на фиг. 1, представляющего собой видоизменение верхнего чертежа, на котором проиллюстрированы различные случаи определения значений протяженности МСЛ.

Рассмотрим случай 1, когда угол δ равен нулю и направление МСЛ совпадает с линией АЕ. В соответствии с (9) для δ=0 с математической точки зрения существуют два решения уравнения (8), или два значения протяженности МСЛ: D1=RСР+R (линия АЕ) и D2=RСР-R (линия AD).

С физической точки зрения связь с КА в точке Е невозможна, поскольку МСЛ блокируется Землей. Данная ситуация будет сохраняться до тех пор, пока МСЛ не будет проходить на некоторой высоте над поверхностью Земли h, на которой МСЛ не блокируется Землей и радиосигналы не поглощаются земной атмосферой. Например, по результатам экспериментов с установлением лазерной связи между японским низкоорбитальным КА OICETS и европейским геостационарным CP ARTEMIS было определено, что на высотах свыше 50 км над Землей влиянием атмосферы можно пренебречь (Y. Takayama et al. Observation of atmospheric influence on OICETS inter-orbit laser communication demonstrations. // Free-Space Laser Communication Technologies VII, Proc. of SPIE Vol. 6709, 67091B, 2007). Как следует из нижнего чертежа на фиг. 1, это отклонение МСЛ от направления на центр Земли соответствует пороговому значению , равному

Т.е., для значений δ, лежащих в пределах от 0 до , уравнение (9) имеет только одно решение:

Случай 2 соответствует ситуации, когда МСЛ проходит по касательной к сфере возможных положений КА (КА в этом случае находится в точке F). Для этого случая у уравнения (8) для протяженности МСЛ D, соответствующей максимальному углу отклонения δмакс, равному

существует одно единственное решение:

Наконец, для значений δ, лежащих в пределах <δ<δмакс, уравнение (8) имеет два действительных решения, соответствующих протяженности МСЛ до «ближнего» КА (линия AG) и до «дальнего» КА (линия АН), которые соответственно равны:

и

Другим изменяющимся в пространстве параметром МСЛ является шумовая температура приемной системы СР.

Полная эквивалентная шумовая температура приемной системы, состоящей из антенны, фидерного тракта и малошумящего усилителя (МШУ), пересчитанная ко входу МШУ, может быть описана следующим выражением [1, с. 172]:

где TA - эквивалентная шумовая температура антенны; To - абсолютная температура окружающей среды; ЕМШУ - эквивалентная шумовая температура собственно МШУ, обусловленная его внутренними шумами; ηф - коэффициент передачи фидерного тракта.

Температура антенны ТА определяется интегралом по полному телесному углу Ω=4π [1, с. 173]:

где Тя(ϕ,θ) и G(ϕ,θ) - соответственно яркостная температура излучения и коэффициент усиления антенны в сферических координатах ϕ и θ. Поскольку в дальнейшем речь пойдет о приемной антенне СР, и центром упомянутой сферической системы координат будет точка расположения СР, то одна из угловых сферических координат (θ) станет при дальнейшем анализе эквивалентом рассмотренного ранее угла отклонения оси приемной антенны СР от направления на центр Земли δ.

На фиг. 2 показаны два варианта ориентации диаграммы направленности (ДН) 3 приемной антенны СР при осуществлении связи с КА при нахождении его в различных точках 4 на сфере возможных положений 2 в условиях теплового излучения Земли 5 в направлении СР.

В варианте, показанном на верхнем чертеже фиг. 2, ДН 3 приемной антенны СР ориентирована на центр Земли и ее тепловое излучение 5 воздействует как по главному лепестку ДН 3, так и по боковым. Поэтому в данном случае приемная антенна СР будет характеризоваться максимальной шумовой температурой. По мере отклонения оси ДН 3 от направления на центр (т.е., с увеличением угла δ) главный лепесток будет постепенно выходить за пределы земного диска, и воздействие теплового излучения Земли 5 теперь будет восприниматься приемной антенной СР в основном по боковым лепесткам и, возможно, по главному лепестку ДН 3 при относительно низких уровнях усиления (нижний чертеж на фиг. 2). При отклонении оси ДН 3 на угол δмакс по главному лепестку будет воздействовать в основном тепловое излучение космических источников, характеризующееся существенно меньшим уровнем, чем излучение Земли, что вызвано их большей удаленностью и значительно меньшими угловыми размерами.

Так, если яркостная температура Земли составляет примерно 290 К, то максимальная яркостная температура космического фона на частотах порядка 2 ГГц не превышает 6 К и постепенно снижается с ростом частоты [1, с. 175, 178].

Итак, в ходе проведенного анализа составляющих уравнения (1), определяющего ЭИИМ передающей системы абонентской станции, установлено, что для МСЛ, использующей приемную антенну СР с узким и управляемым лучом, в указанном уравнении имеются параметры, зависящие от угла δ: шумовая температура приемной системы СР и протяженность МСЛ D.

Преобразуем выражение (1) применительно к ЭИИМ КА, выделив составляющие, зависящие от угла δ:

С учетом того, что все составляющие в правой части выражения (18), кроме D и , являются постоянными величинами, можно записать:

где

На фиг. 3 приведены графики зависимости протяженности МСЛ D (верхний чертеж) и температуры приемной системы СР от угла отклонения δ (нижний чертеж).

График функции D(δ) построен применительно к СР на геостационарной орбите радиусом RСР=42164 км, КА на круговой орбите радиусом R=8378 км и минимальной высоте прохождения радиолуча над поверхностью Земли h=100 км. Это соответствует значениям =8,8° и δмакс=11,5°, вычисленным по формулам (10) и (12). При этом для δ<8,8° приведены значения D для «ближних» КА, рассчитанные по формуле (14), а для δ≥8,8° - значения D для «дальних» КА, рассчитанные по формуле (15).

График функции (δ) построен для приемной системы геостационарного CP S-диапазона с антенной, формирующей луч шириной около 3° по уровню половинной мощности. Данные для этого графика могут быть получены как расчетным, так и экспериментальным путем.

Поскольку характер зависимости параметров и D от δ для значений δ<8,8° является прямо противоположным, это дает основание предполагать наличие экстремума у функции ЭИИМКА(δ). Для подтверждения данного предположения рассмотрим характер изменения произведения (а значит и ЭИИМКА) в зависимости от угла δ. В таблице 1 для этой цели приведены значения:

- и D(δ), на основании которых построены графики, представленные на фиг. 3;

- ( - var) для изменяющейся от угла δ шумовой температуры антенны;

- (=const) в предположении, что шумовая температура антенны остается неизменной, например максимальной, принятой для δ=0, как это делается при расчетах для наихудших условий связи.

Обе величины (при Т - var и =const) представлены в логарифмическом масштабе () и имеют размерность дБ⋅К⋅км2. Для простоты сопоставления указанных величин в таблице 1 приведены также нормированные их значения:

- Δ1 - нормированное значение при - var;

- Δ2 - нормированное значение при =const.

Графики зависимости Δ1 и Δ2 от δ представлены на фиг .4. Из этих графиков следует, что при значении угла δ равном 8,8°, которое для рассматриваемого случая было определено выше как , произведение и, следовательно, функция ЭИИМКА(δ) имеют максимум, т.е. расчет ЭИИМКА необходимо производить при значениях и D для угла δ=. Тем самым гарантируется, что при установленном по результатам вышеприведенного расчета значении ЭИИМКА заданные качество и скорость передачи информации в направлении КА - СР будут обеспечиваться во всем диапазоне рабочих углов δ.

Сравнение указанных графиков зависимости Δ1 и Δ2 от δ также показывает, что учет изменения шумовой температуры приемной антенны СР на направлениях МСЛ вне земного диска (график Δ1) позволяет получить выигрыш в значении ЭИИМКА в 0,8 дБ по отношению к случаю, если бы такой учет не производился (график Δ2).

Таким образом, использование предлагаемого способа обеспечивает минимизацию энергетических затрат низкоорбитального КА, необходимых для передачи единицы информации на высокоорбитальный СР.

По результатам проведенного авторами анализа известной патентной и научно-технической литературы не обнаружена совокупность признаков, эквивалентных (или совпадающих) с признаками данного предполагаемого изобретения, поэтому заявители склонны считать техническое решение отвечающим критерию «новизна».

Предложенный автором способ в настоящее время используется при задании параметров низкоорбитальных абонентов космических систем ретрансляции информации от объектов ракетно-космической техники.

Способ установления оптимального значения эквивалентной изотропно излучаемой мощности передающей системы космического аппарата на низкой круговой орбите для связи со спутником-ретранслятором на высокой круговой орбите, оснащенным приемной антенной с узким управляемым лучом, при котором задают значения энергопотенциала межспутниковой линии как отношения энергии бита Е к спектральной плотности шумов N на выходе приемной системы спутника-ретранслятора, исходя из требований к скорости передачи данных и к коэффициенту битовой ошибки для выбранной сигнально-кодовой структуры, а также длины волны λ, скорости передачи информации R и коэффициента осевого усиления приемной антенны спутника-ретранслятора G, определяют дополнительные потери в межспутниковой линии L, связанные, например, с рассогласованием эллипсов поляризации передающей антенны космического аппарата и приемной антенны спутника-ретранслятора, ошибками взаимного наведения указанных антенн, протяженность межспутниковой линии D и шумовую температуру приемной системы спутника-ретранслятора Т, вычисляют эквивалентную изотропно излучаемую мощность космического аппарата как ЭИИМ=(Е/N)[(4πD)kТRL/Gλ], где k - постоянная Больцмана, отличающийся тем, что значения протяженности межспутниковой линии и шумовой температуры приемной системы спутника-ретранслятора вычисляют для порогового значения угла отклонения линии визирования «космический аппарат - спутник-ретранслятор» от направления «спутник-ретранслятор - центр Земли» δ=arcsin [(R+h)/R], где R - радиус Земли, R - радиус орбиты спутника-ретранслятора, h - минимально допустимая высота прохождения межспутниковой линии над поверхностью Земли.
СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ
СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ
СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ
СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ
СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ
СПОСОБ УСТАНОВЛЕНИЯ ОПТИМАЛЬНОГО ЗНАЧЕНИЯ ЭКВИВАЛЕНТНОЙ ИЗОТРОПНО ИЗЛУЧАЕМОЙ МОЩНОСТИ ПЕРЕДАЮЩЕЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА НА НИЗКОЙ КРУГОВОЙ ОРБИТЕ ДЛЯ СВЯЗИ СО СПУТНИКОМ-РЕТРАНСЛЯТОРОМ НА ВЫСОКОЙ КРУГОВОЙ ОРБИТЕ, ОСНАЩЕННЫМ ПРИЕМНОЙ АНТЕННОЙ С УЗКИМ УПРАВЛЯЕМЫМ ЛУЧОМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 193.
27.06.2015
№216.013.5815

Способ защиты командно-измерительной системы космического аппарата

Изобретение относится к области автоматизированных систем управления подвижными объектами, в частности космическими аппаратами (КА), и, более конкретно, к способам защиты командно-измерительной системы космического аппарата от несанкционированного вмешательства, возможного со стороны...
Тип: Изобретение
Номер охранного документа: 0002554090
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5824

Способ эскплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата, эксплуатирующегося на низкой околоземной орбите

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей в автономных системах электропитания космических аппаратов, эксплуатируемых на низкой околоземной орбите. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002554105
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6960

Способ коррекции орбитального движения космического аппарата

Изобретение относится к управлению движением космического аппарата (КА) с помощью реактивного двигателя коррекции (ДК). Способ включает приложение к КА тестового и корректирующего воздействий. При каждом из них определяют темпы нагрева стенки камеры сгорания ДК. По тестовым данным (тяге и темпу...
Тип: Изобретение
Номер охранного документа: 0002558529
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6961

Способ резервирования космического аппарата на геостационарной орбите

Изобретение относится к управлению движением геостационарных космических аппаратов (КА) в периоды резервирования и оперативного ввода в эксплуатацию. На этапе пассивного дрейфа КА из стартовой позиции резервирования (СПР) в рабочую орбитальную позицию (точку «стояния») минимизируют...
Тип: Изобретение
Номер охранного документа: 0002558530
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b09

Способ мониторинговой коллокации на геостационарной орбите

Изобретение относится к управлению движением группы (кластера) космических аппаратов (КА), преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными. Сумма эксцентриситетов орбит...
Тип: Изобретение
Номер охранного документа: 0002558959
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b0a

Держатель

Изобретение относится к средствам временной фиксации различных устройств на космическом аппарате (КА), в частности панелей солнечных батарей. Держатель имеет корпус, из которого выступает стягивающий штырь (2), удерживающий элементы (4.1-4.n). Для блокировки-разблокировки оголовка штыря служат...
Тип: Изобретение
Номер охранного документа: 0002558960
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ca4

Регулируемый узел крепления

Изобретение относится к машиностроению и может быть использовано в разъемных соединениях. Регулируемый узел крепления содержит болты, сферические шайбы, гайки, втулки с наружной резьбой, углепластиковую площадку со стропами из арамидного волокна, накладку из металлических сплавов, три...
Тип: Изобретение
Номер охранного документа: 0002559370
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ca5

Способ автономной коллокации на геостационарной орбите

Изобретение относится к космической технике и может быть использовано для автономной коллокации на геостационарной орбите. Переводят векторы наклонения и эксцентриситета на границы разнесенных относительно друг друга областей прицеливания, измеряют параметры орбиты каждого космического аппарата...
Тип: Изобретение
Номер охранного документа: 0002559371
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dc7

Способ электрических проверок космического аппарата

Изобретение относится к наземным испытаниям, в т.ч. при изготовлении космических аппаратов (КА). КА содержит систему электропитания с бортовыми источниками: солнечными (СБ) и аккумуляторными (АБ) батареями, а также стабилизированным преобразователем напряжения (СПН) с зарядными и разрядными...
Тип: Изобретение
Номер охранного документа: 0002559661
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df0

Многоканальный командный аппарат с электронной коммутацией

Изобретение относится к области электронной техники и автоматики и может быть использовано для формирования импульсов команд управления исполнительными элементами. Техническим результатом является повышение надежности устройства многоканального командного аппарата с электронной коммутацией за...
Тип: Изобретение
Номер охранного документа: 0002559702
Дата охранного документа: 10.08.2015
Показаны записи 1-8 из 8.
27.12.2013
№216.012.923a

Многофункциональная космическая система ретрансляции для информационного обмена с космическими и наземными абонентами

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокой, например, геостационарной орбите и предназначено для преимущественного использования в глобальных космических системах ретрансляции и связи, осуществляющих информационный обмен с космическими и...
Тип: Изобретение
Номер охранного документа: 0002503127
Дата охранного документа: 27.12.2013
20.07.2014
№216.012.de61

Способ управления многолучевым покрытием зоны обслуживания в спутниковой системе с использованием спутников-ретрансляторов на высокоэллиптической орбите

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокоэллиптических орбитах. Технический результат состоит в повышении эффективности использования бортовой приемопередающей аппаратуры спутника-ретранслятора, участвующей в формировании многолучевого покрытия...
Тип: Изобретение
Номер охранного документа: 0002522715
Дата охранного документа: 20.07.2014
10.08.2015
№216.013.6b09

Способ мониторинговой коллокации на геостационарной орбите

Изобретение относится к управлению движением группы (кластера) космических аппаратов (КА), преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными. Сумма эксцентриситетов орбит...
Тип: Изобретение
Номер охранного документа: 0002558959
Дата охранного документа: 10.08.2015
26.08.2017
№217.015.d812

Способ компоновки приемной системы геостационарного космического аппарата для связи с низкоорбитальными объектами ракетно-космической техники

Изобретение относится к бортовому оборудованию геостационарных космических аппаратов (КА) для ретрансляции данных между низкоорбитальными КА и центрами управления и приема сообщений. На антенной штанге (14) вблизи рефлектора (13) параболической антенны закреплены с помощью установочных плит...
Тип: Изобретение
Номер охранного документа: 0002622426
Дата охранного документа: 19.06.2017
18.05.2019
№219.017.5932

Способ построения глобальной спутниковой системы ретрансляции информации между низкоорбитальными космическими аппаратами и наземными приемопередающими станциями с использованием спутников-ретрансляторов на геостационарной орбите

Изобретение относится к области радиосвязи с применением геостационарных спутников-ретрансляторов (СР). Техническим результатом является обеспечение глобального обслуживания геостационарными СР низкоорбитальных космических аппаратов (НКА) в любой точке их возможного местонахождения на орбите....
Тип: Изобретение
Номер охранного документа: 0002412547
Дата охранного документа: 20.02.2011
24.10.2019
№219.017.da31

Способ автономной коллокации на околостационарной орбите

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния. Один из КА работает в режиме автономной (или само-) коллокации (КАСК). Рабочую позицию КАСК выбирают рядом (по долготе)...
Тип: Изобретение
Номер охранного документа: 0002703696
Дата охранного документа: 21.10.2019
14.05.2023
№223.018.5588

Способ построения космической системы ретрансляции информации между земными станциями и абонентскими терминалами

Изобретение относится к технике связи и может использоваться в космических системах ретрансляции информации между лунными станциями., которые могут быть размещены как на поверхности Луны, так и на окололунной орбите, и земными станциями управления и приема/передачи сообщений с использованием...
Тип: Изобретение
Номер охранного документа: 0002738263
Дата охранного документа: 11.12.2020
16.06.2023
№223.018.7b8b

Способ построения космической системы ретрансляции и связи

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокоэллиптических и геостационарной орбитах и предназначено для преимущественного использования в космических системах ретрансляции и связи. Технический результат состоит в разработке способа построения...
Тип: Изобретение
Номер охранного документа: 0002755019
Дата охранного документа: 09.09.2021
+ добавить свой РИД