×
20.04.2023
223.018.4b64

Результат интеллектуальной деятельности: Способ трекинга гибкого хирургического инструмента на основе инерциальных МЭМС датчиков

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к медицинской технике, а именно к разработке позиционирования хирургических инструментов на основе инерциальных микроэлектромеханических (МЭМС) датчиков, а именно к средствам позиционирования, ориентирования и отслеживания хирургических инструментов. Техническим результатом является создание системы инерциального позиционирования и отслеживания хирургических инструментов на основе МЭМС датчиков в режиме реального времени. Заявленный способ реализует использование блока хирургического инструмента с МЭМС датчиками и вычислительного блока. Блок хирургического инструмента с МЭМС датчиками включает в себя гибкий хирургический инструмент 1, МЭМС датчики 2, шины питания и данных 3. Вычислительный блок включает в себя микроконтроллер 4, блок передачи данных 5, вычислительного модуля 6, источника питания 7, программного обеспечения 8, персонального компьютера с программным обеспечением для 3D-моделирования 9 и дисплея 10. 2 ил.

Настоящее изобретение относится к медицинской технике, а именно к разработке способа позиционирования хирургических инструментов на основе инерциальных микроэлектромеханических (МЭМС) датчиков, а именно к средствам позиционирования, ориентирования и отслеживания перемещения гибких хирургических инструментов.

Данная задача решается за счет того, хирургические инструменты позиционируются с помощью различных методов, таких как электромагнитные системы позиционирования, вычислительная геометрия и векторная алгебра, и система инерциального позиционирования. В методике электромагнитных систем позиционирования используются приемники и передатчики напряженности магнитного поля, которые воздействуют на металлические хирургические инструменты, что, в результате, приводит к ошибкам в определении положения хирургического инструмента. В методике вычислительной геометрии и векторной алгебры используется дополнительный математический метод триангуляции, который использует систему оптической локализации, маркеры и опорные точки.

Известен способ определения положения и ориентации перемещающегося объекта с использованием магнитного поля, где применяются дипольные передающие антенны, генерирующие либо переменные, либо импульсные магнитные поля, измеряемые закрепленными на объекте датчиками, причем показания датчиков затем используются для вычисления ориентации, определяемой в общем случае тремя угловыми координатами (азимут, угол места и крена), и тремя линейными координатами объекта [1].

Однако при наличии вблизи источника магнитного поля электропроводящих материалов точность таких систем в значительной степени подвержена влиянию вторичных магнитных полей, генерируемых наводимыми вихревыми токами, при этом величина и распределение поля существенно искажаются в случае присутствия вблизи рабочей области материалов с высокой магнитной проницаемостью. Поэтому предварительно осуществляют магнитное картографирование области перемещения объекта, что заключается в измерении значений компонент магнитного поля с построением карты магнитного поля помех в области перемещения объекта. и в основном применяется в авиационной технике, следящих и охранных системах и мультимедийных компьютерных технологиях. немножко

В данном способе используются много вычислительных блоков, таких как источник рабочего поля (ИРП) с устройством управления, соединенным с бортовым компьютером летательного аппарата, приемник, содержащий девять однокомпонентных дифференциальных датчиков, устройство в виде печатной платы с микроконтроллером для передачи показаний датчиков на компьютер и трехкомпонентный датчик поля Земли, располагаемый на удалении от ИРП. С точки зрения себестоимости и сложности схемотехнических решений (технических решений) использование этой методики становится затруднительным. Кроме того, область перемещения подвижного объекта в пространстве ограничена, причем его отдаление от рабочей области приводит к снижению точности измерений. Однако нет возможности прикреплять данный датчик на конструкцию хирургического инструмента, так как имеет большие по сравнению с местом крепления размеры, вследствие того, что приемник содержит девять однокомпонентных дифференциальных датчиков и устройство в виде печатной платы с микроконтроллером для передачи показаний датчиков.

Известен способ определения ориентации объекта с помощью инерциального измерительного модуля, который вычисляет корректирующие сигналы позиционной коррекции и решает кинематические уравнения для вычисления оценок углов ориентации, к корректирующим сигналам позиционной коррекции добавляют перекрестные сигналы коррекции в каждом канале, коэффициенты которых задаются исходя из необходимых динамических свойств системы, целью которого является повышение точности автономного определения параметров ориентации подвижных объектов. Инерциальный измерительный модуль состоит из трехосного блока магнитометров, трехосного блока акселерометров и трехосного блока гироскопов [2].

Данный способ позволяет повысить точность решения задачи автономной ориентации подвижных объектов за счет асимптотической устойчивости системы по всем трем углам ориентации, возможности настройки системы на период Шулера для компенсации баллистических погрешностей без введения интегральной коррекции, возможности настройки системы как фильтр нижних частот по всем входам и выходам.

Недостатком данного способа является обширная область использования; относится к приборостроению, именно к области приборов и систем ориентации, и может быть применен в системах управления подвижными объектами. Предлагаемый способ относится только к области медицинской техники, а именно для определения и слежения гибкого хирургического инструмента в пространстве; кроме того, описаны назначение, подключение, принцип и состав каждого блока, а также расположение МЭМС датчиков вдоль хирургического инструмента.

Кроме того, другим недостатком данного способа является автономная ориентация и навигация подвижных объектов в условиях отсутствия возможности применения спутниковых навигационных систем, возможное использование в авиационной, морской и наземной техниках. Однако предлагаемый способ относится к области медицинской техники, поскольку медучреждения находятся в зоне спутниковых навигационных систем, кроме тех случаев, когда возможно по специальному назначению находиться на наземных или морских площадках.

Наиболее близким к заявленному техническому решению является способ автономной ориентации подвижного объекта с помощью инерциального измерительного модуля.

Из изученной научно-технической и патентной информации не известен способ определения ориентации и положения гибкого хирургического инструмента в трехмерном пространстве с указанными в формуле изобретения отличительными признаками. Это дает основание сделать вывод о соответствии заявляемого способа критериям изобретения.

Задачей, на решение которой направлено заявляемое изобретение, является упростить работу врача-хирурга и избежать нанесения повреждений пациенту.

Технический результат – определение и отслеживание положения гибкого хирургического инструмента в трехмерном пространстве на основе инерциальных МЭМС датчиков в режиме реального времени.

Технический результат достигается тем, что способ трекинга гибкого хирургического инструмента, включающий использование составного модуля, реализованного в виде единой цифровой МЭМС микросхемы, включающей трехосевой магнитометр, трехосевой гироскоп и трехосевой акселерометр, согласно изобретению инерциальные МЭМС датчики в виде отдельной цифровой МЭМС микросхемы, которые располагают вдоль хирургического инструмента, после чего фиксируют определённую координату хирургического инструмента в пространстве и определяют его положение в каждой точке; причем количество МЭМС датчиков зависит от длины хирургического инструмента, а расстояние между двумя из них определяется требуемой точностью позиционирования элементов инструмента и составляет от 2 до 10 мм, в микроконтроллер по шинам питания и данных передаются зафиксированные МЭМС датчиками значения, которые затем принимаются в блоке передачи данных; в качестве блока передачи данных можно использовать проводной и беспроводной виды соединений, после чего через шины питания и данных полученные значения передаются к вычислительному модулю; в вычислительном модуле осуществляется обработка данных, затем через интерфейс передачи информации передаются в персональный компьютер, и на платформе разработки 3D-приложений в реальном времени отрисовывается положение хирургического инструмента в трехмерном пространстве и отображается на мониторе персонального компьютера; с помощью источника питания обеспечивается подача электрической энергии вычислительному модулю, блоку передачи данных и микроконтроллеру; в микроконтроллере, модуле для беспроводной передачи и приема данных и вычислительном модуле по назначению прошивается программное обеспечение.

Сущность изобретения поясняется чертежами, на которых изображено:

на фиг.1 изображен блок хирургического инструмента с МЭМС датчиками, на фиг.2 изображен вычислительный блок.

Предлагаемое устройство, состоящее из блока хирургического инструмента с МЭМС датчиками (трехосевой акселерометр, трехосевой гироскоп и трехосевой магнетометр) (фиг.1) включает в себя гибкий хирургический инструмент 1, МЭМС датчики 2, шины питания и данных 3. Вычислительный блок (фиг.2) включает в себя микроконтроллер 4, блок передачи данных 5, вычислительного модуля 6, источника питания 7, программного обеспечения 8, персонального компьютера с программным обеспечением для 3D-моделирования 9 и дисплея 10.

На фиг.1 приведено расположение МЭМС датчиков 2 в гибком хирургическом инструменте 1. МЭМС датчики располагаются вдоль хирургического инструмента 1, количество МЭМС датчиков зависит от типа хирургического инструмента. С точки зрения сложности схемотехнического решения, влияния внешних шумов, соотношения массогабаритных показателей и себестоимости наиболее лучшим вариантом является использование составного модуля, реализованного в виде единой цифровой МЭМС микросхемы, включающей трехосевой магнитометр, трехосевой гироскоп и трехосевой акселерометр. Несмотря на то, что по строению хирургические инструменты бывают гибкие и жесткие, датчики можно использовать в обоих случаях. Расстояние между двумя составным модулями определяется требуемой точностью позиционирования элементов инструмента и составляет от 2 до 10 мм. Шины питания и данных 3 соединяют МЭМС датчики с внешней средой. На фиг.2 приведен вычислительный блок, который проводит дальнейшую обработку получаемого значения с блока хирургического инструмента с МЭМС датчиками (фиг.1). Блок хирургического инструмента с МЭМС датчиками через шины питания и данных 3 подключаются к микроконтроллеру 4. Микроконтроллер 4 принимает зафиксированные МЭМС датчиками значения и передает их в блок передачи данных 5. В качестве блока передачи данных можно использовать проводной и беспроводной виды соединений. В случае применения проводного соединения через шины питания и данных полученные значения передаются к вычислительному модулю 6. В случае применения беспроводного соединения можно использовать модуль для беспроводной передачи и приема данных, который представляет из себя ведущий - передатчик и ведомый - приемник. Ведущий - передатчик подключается к микроконтроллеру, а ведомый - приемник подключается к вычислительному модулю. Данные от ведущего – передатчика передаются к ведомому - приемника, и после чего их принимает вычислительный модуль. В вычислительном модуле осуществляется обработка данных, затем через интерфейс передачи информации передаются в персональный компьютер 9. На платформе разработки 3D-приложений в реальном времени отрисовывается положение хирургического инструмента в трехмерном пространстве и отображается на мониторе персонального компьютера 11. С помощью источника питания 7 обеспечивается подача электрической энергии вычислительному модулю, блоку передачи данных и микроконтроллеру. В микроконтроллере 4, модуле для беспроводной передачи и приема данных и вычислительном модуле 6 по назначению прошивается программное обеспечение 8.

Устройство работает следующим образом: вдоль хирургического инструмента 1 будут располагаться (прикрепляться) чувствительные элементы микроэлектромеханических систем (МЭМС) 2. Каждый датчик фиксирует определённую координату хирургического инструмента в пространстве. По полученным значениям в режиме реального времени составляется трехмерное изображение гибкого хирургического инструмента в пространстве и определяется его положение в каждой точке.

Приведенная совокупность признаков, обеспечивает создание системы инерциального позиционирования и слежения хирургических инструментов на основе МЭМС датчиков в режиме реального времени.

Литература

1. Патент РФ № 2241958. МПК G01C21/00. СПОСОБ (ВАРИАНТЫ) И СЛЕДЯЩАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ И ОРИЕНТАЦИИ ПОДВИЖНОГО ОБЪЕКТА/ Амосков В.М. Заявл.02.12.2003. Опубл. 10.12.2004. Бюл. № 34. – 20 с.

2. Патент РФ № 2738342. МПК G01M7/00. Способ автономной ориентации подвижного объекта с помощью инерциального измерительного модуля/ Амосков В.М. Заявл.30.12.2019. Опубл. 11.12.2020. Бюл. № 35. – 15 с.

Способ трекинга гибкого хирургического инструмента, включающий использование составного модуля, реализованного в виде единой цифровой МЭМС микросхемы, включающей трехосевой магнитометр, трехосевой гироскоп и трехосевой акселерометр, отличающийся тем, что инерциальные МЭМС датчики в виде отдельной цифровой МЭМС микросхемы, которые располагают вдоль хирургического инструмента, после чего фиксируют определённую координату хирургического инструмента в пространстве и определяют его положение в каждой точке; причем количество МЭМС датчиков зависит от длины хирургического инструмента, а расстояние между двумя из них определяется требуемой точностью позиционирования элементов инструмента и составляет от 2 до 10 мм, в микроконтроллер по шинам питания и данных передаются зафиксированные МЭМС датчиками значения, которые затем принимаются в блоке передачи данных; блок передачи данных использует проводной и беспроводной виды соединений, после чего через шины питания и данных полученные значения передаются к вычислительному модулю; в вычислительном модуле осуществляется обработка данных, затем через интерфейс передачи информации передаются в персональный компьютер,и на платформе разработки 3D-приложений в реальном времени отрисовывается положение хирургического инструмента в трехмерном пространстве и отображается на мониторе персонального компьютера; с помощью источника питания обеспечивается подача электрической энергии вычислительному модулю, блоку передачи данных и микроконтроллеру; в микроконтроллере, модуле для беспроводной передачи и приема данных и вычислительном модуле по назначению прошивается программное обеспечение.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 138.
26.08.2017
№217.015.d5f7

Глушитель

Изобретение относится к двигателям внутреннего сгорания и может быть использовано для снижения шума выхлопных газов. Глушитель содержит корпус, входной и выходной патрубки, перегородки. Внутри корпуса помещены секции, каждая из которых выполнена из двух поперечных перегородок в виде...
Тип: Изобретение
Номер охранного документа: 0002623012
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d844

Устройство для получения арболита

Изобретение относится к деревообрабатывающей промышленности, в частности к оборудованию для получения арболита. Устройство содержит корпус, механизм перемешивания с лопатками и привод. Корпус устройства выполнен в виде горизонтально расположенного полого цилиндра. На опорах в подшипниковых...
Тип: Изобретение
Номер охранного документа: 0002622736
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.df08

Рабочий орган машины для срезания кустарника и поросли

Изобретение относится к лесной промышленности и может быть использовано для срезки кустарника и поросли под линиями электропередач, в ложах водохранилищ, при проведении рубок ухода за лесом. Рабочий орган машины для срезания кустарника и поросли содержит корпус и режущий орган с приводом....
Тип: Изобретение
Номер охранного документа: 0002624970
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df24

Перекатываемая емкость лесного пожарного агрегата

Изобретение относится к лесной пожарной технике, а именно к перекатываемым емкостям для доставки и подачи к очагу горения жидких огнегасящих агентов, применяемых при борьбе с лесными пожарами. Перекатываемая емкость лесного пожарного агрегата оснащена рамой, оболочкой, которую заполняют...
Тип: Изобретение
Номер охранного документа: 0002625088
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e104

Плавучее рыбозащитное устройство

Изобретение относится к гидротехническому строительству, а именно к рыбозащитным устройствам в составе мобильных водозаборных сооружений, используемых на малых водотоках. Плавучее рыбозащитное устройство включает сетчатый рыбозащитный экран, выполненный в виде сегмента цилиндра из мелкоячеистой...
Тип: Изобретение
Номер охранного документа: 0002625493
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e90f

Центробежный измельчитель

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам для измельчения фуражного зерна и других сыпучих материалов, используемых для кормления животных. Центробежный измельчитель содержит соосно расположенные диски, установленные на одном валу с возможностью...
Тип: Изобретение
Номер охранного документа: 0002627536
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e9c4

Цифровой вычислительный синтезатор с частотной модуляцией

Изобретение относится к электронно-вычислительной технике и радиотехнике, предназначено для синтеза частотно-модулированных (ЧМ) сигналов и может быть использовано в телекоммуникационных системах и современных адаптивных системах связи. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002628216
Дата охранного документа: 15.08.2017
26.08.2017
№217.015.ede3

Лесопожарный грунтомет

Изобретение относится к устройствам, предназначенным для прокладки защитных минерализованных полос, а также тушения низовых пожаров грунтом. Лесопожарный грунтомет содержит силовую установку, рабочий орган, привод управления. Рабочий орган установлен впереди рамы, а снизу за ним жестко...
Тип: Изобретение
Номер охранного документа: 0002628932
Дата охранного документа: 22.08.2017
20.01.2018
№218.016.0f92

Ножной бур для образования посадочных лунок

Изобретение относится к сельскохозяйственной технике и может найти применение в лесном хозяйстве при образовании лунок для создания лесных культур дуба черешчатого с закрытой корневой системой на глинистых и суглинистых почвах. Ножной бур включает центральный стержень, жестко соединенный с...
Тип: Изобретение
Номер охранного документа: 0002633560
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0fec

Способ контроля скорости формирования тонких пленок на различном расстоянии от источника материала

Изобретение относится к технологии тонких пленок и может быть использовано при отработке технологии получения пленок, когда необходимо определить скорости напыления пленок в зависимости от расстояния источника материала-подложка.Техническим результатом изобретения является ускорение процесса...
Тип: Изобретение
Номер охранного документа: 0002633687
Дата охранного документа: 16.10.2017
Показаны записи 1-2 из 2.
10.04.2015
№216.013.37ed

Способ ранней диагностики синдрома жировой эмболии при переломах длинных трубчатых костей и костей таза

Изобретение относится к медицине, а именно к травматологии и ортопедии; может быть использовано для ранней диагностики синдрома жировой эмболии при переломах длинных трубчатых костей и костей таза и контроля эффективности проводимого лечения. Способ диагностики синдрома жировой эмболии...
Тип: Изобретение
Номер охранного документа: 0002545805
Дата охранного документа: 10.04.2015
25.08.2017
№217.015.a936

Способ диагностики синдрома жировой эмболии при переломах костей нижних конечностей

Изобретение относится к области медицины, в частности к травматологии и ортопедии, и предназначено для диагностики синдрома жировой эмболии (СЖЭ) при переломах костей нижних конечностей. В первые сутки посттравматического периода производят забор у пациента венозной крови и последующее ее...
Тип: Изобретение
Номер охранного документа: 0002611363
Дата охранного документа: 21.02.2017
+ добавить свой РИД