×
20.04.2023
223.018.4ade

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ЦИФРОВОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ СЛЕДЯЩЕЙ СИСТЕМОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД). Техническим результатом настоящего изобретения является снижение токопотребления электромеханического привода цифровой следящей электромеханической системы пропорционально уменьшению напряжения питания электродвигателя. Согласно способу управления цифровой электромеханической следящей системой преобразуют двоичный код Грея δ дискретного датчика угла электромеханического привода в двоичный код обратной связи δ, сравнивают командный двоичный код от формирователя командного кода δ с двоичным кодом обратной связи δ, формируют двоичный код рассогласования δ, сравнивают код рассогласования δ с заданными значениями кодов переключения режима управления электродвигателями δ, …, δ, δ, причем n=2, 3, …, и с заданной величиной кода точности поддержания требуемого положения δ. При |δр|>δ преобразуют код рассогласования δ в напряжение соответствующей коду рассогласования δ полярности, усиливают его до максимального значения и подают на электродвигатель электромеханического привода, приводящий во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении. По мере уменьшения значения кода рассогласования δ последовательно уменьшают подаваемое на электродвигатель электромеханического привода напряжение питания и приводят во вращение вал электродвигателя, вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом при пониженных значениях напряжения питания. При совпадении кодов δ и δс заданной точностью ±δ, то есть |δ|≤δ, прекращают подачу на электродвигатель электромеханического привода напряжения питания и формируют в нем ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала электродвигателя, вала редуктора и вала дискретного датчика угла электромеханического привода. Это позволяет повысить плавность процесса регулирования системы, при автоколебательных режимах ее работы, вызванных действием на выходной вал электромеханического привода значительных позиционных или постоянно действующих нагрузок, а также при работе в условиях действия вибраций и ударов за счет функционирования перед остановом только одного из электродвигателей. 1 ил.

Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например, для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД).

Известен способ управления цифровой электромеханической следящей системой - аналог (Батоврин А.А., Дашевский П.Г., Лебедев В.Д. и др. Цифровые системы управления электроприводами. Л., «Энергия», 1977. 256 с.) [1], заключающийся в том, что сравнивают командный двоичный код от формирователя командного кода с двоичным кодом преобразователя угла поворота, формируют двоичный код ошибки, преобразуют двоичный код ошибки в напряжение определенной полярности, усиливают его и подают на исполнительный двигатель, которым вращают исполнительный механизм и преобразователь угла поворота, а при совпадении командного двоичного кода от формирователя командного кода и двоичного кода преобразователя угла поворота прекращают подачу напряжения на исполнительный двигатель.

Недостатком такого способа управления цифровой электромеханической следящей системой является невозможность обеспечения требования по точности слежения при больших скоростях привода и длительных тактах квантования цифровой вычислительной машины. Это связано с тем, что при таком способе все сигналы внутри контура передаются с тактом квантования, присущим данному формирователю командного кода, и дискретностью по уровню, определяемой разрядностью аналого-цифрового преобразователя датчика обратной связи. При этом логика управления системой построена таким образом, что останов выходного вала может произойти только при совпадении кода от формирователя командного кода с кодом от аналого-цифрового преобразователя датчика обратной связи. А так, как с повышением скорости вращения выходного вала привода уменьшается вероятность того, что из-за большой величины такта квантования коды совпадут именно в момент достижения валом требуемого положения, то имеют место "выбеги" или перерегулирование с забросом вала за уровень, определяемый дискретностью команды, т.е. не обеспечиваются требования по качеству переходного процесса.

Известен способ управления цифровой электромеханической следящей системой - прототип (см. Белицкий Д.С., Жарков М.Н., Стоялов В.В., Шутенко В.И. Электромеханический привод в системе управления режимами жидкостных ракетных двигателей. Известия академии наук. Теория и системы управления. 1996, №1, С 118-124) [2], заключающийся в том, что преобразуют двоичный код Грея δГ дискретного датчика угла электромеханического привода в двоичный код обратной связи δу, сравнивают командный двоичный код от формирователя командного кода δХ с двоичным кодом обратной связи δу, формируют двоичный код рассогласования δр, сравнивают код рассогласования δ с заданной величиной кода переключения режима управления электродвигателем δ2 и с заданной величиной кода точности поддержания требуемого положения δ1 при |δр|>δ2 преобразуют двоичный код рассогласования δр в напряжение соответствующее коду рассогласования δр полярности, усиливают его и подают на электродвигатели электромеханического привода, которыми приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, при δ1<|δp|≤δ2 подают на электродвигатели электромеханического привода досылающие импульсы напряжений определенной полярности, которыми приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, а при |δр|≤δп1, прекращают подачу напряжений на электродвигатели электромеханического привода, чем останавливают вращение вала электродвигателя, останавливают вращение выходного вала редуктора и вала дискретного датчика угла электромеханического привода.

При таком способе управления цифровой электромеханической следящей системой для получения высокой точности позиционирования при больших скоростях вращения вала электромеханического привода под нагрузкой управление и цифровую коррекцию электромеханического привода осуществлют через автономное вычислительное устройство, работающее с собственным тактом квантования, который может быть во много раз выше частоты выдачи управляющих сигналов от формирователя командного кода, служащего лишь источником входной информации.

Недостатком такого способа управления цифровой электромеханической следящей системой является ограниченная возможность работы системы при наличии на выходном вале электромеханического привода значительных позиционной и постоянно действующей нагрузкок, а также при его работе в условиях действия вибраций и ударов, при которых в системе наблюдаются автоколебания с большим забросом выходного вала электромеханического привода за уровень, определяемый дискретностью команды, что снижает плавность процесса регулирования. При этом электродвигатель электромеханического привода системы постоянно работает в режиме больших токов, требуемых для возврата вала электромеханического привода в требуемое положение с заданной точностью, что значительно увеличивает электропотребление системой.

Задачей изобретения является повышение плавности процесса регулирования цифровой электромеханической следящей системой.

Техническим результатом настоящего изобретения является снижение затрат электроэнергии на управление электромеханической следящей системой.

Технический результат достигается тем, что в способе управления цифровой электромеханической следящей системой, содержащем преобразование двоичного кода Грея δГ дискретного датчика угла электромеханического привода в двоичный код обратной связи δу, сравнение командного двоичного кода от формирователя командного кода δХ с двоичным кодом обратной связи δу, формирование двоичного кода рассогласования δр, сравнение его с заданной величиной кода переключения режима управления электродвигателем δп2 и с заданной величиной кода точности поддержания требуемого положения δП1, при выполнении условия |δр|>δп2 преобразование кода рассогласования δр в напряжение соответствующей коду рассогласования δр полярности, усиление его до значения напряжения питания и подачу на электродвигатель электромеханического привода, а при |δр|≤δп1 прекращение подачи напряжения питания на электродвигатель электромеханического привода, при этом в отличие от известного способа сравнивают двоичный код рассогласования δр с n-2 дополнительными заданными величинами кода переключения режима управления электродвигателями δп3, δп3, …, δпn-1, причем n=2, 3, …, а n-1 заданным величинам кода переключения режима управления электродвигателем δп2, … δпn-1, δпn, соответствуют n-1 пороговых значений напряжения питания электродвигателя U1, … Un-1, Un, причем Un является максимальным напряжением питания электродвигателя, U2 является минимальным напряжением питания электродвигателя, при котором возможно вращение его вала под нагрузкой, a U1=0, при этом значения кодов и напряжений питания необходимо выполнение следующих условий:

п1|<|δп2|, |δп2|<|δп3|, … <|δпn-1|<|δпn|; |U1|<|U2|, |U2|<|U3|, …<|Un-1|<|Un|;

преобразуют код рассогласования δр в напряжение соответствующей коду рассогласования δр полярности и усиливают, при |δр|>δпn подают на электродвигатель электромеханического привода усиленное напряжение Un соответствующей коду рассогласования δр полярности, чем приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, при достижении кодом рассогласования значения, при котором δпn-1<|δp|≤δпn, подают на электродвигатель электромеханического привода усиленное напряжение Un-1 соответствующей коду рассогласования δр полярности, чем приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, и так далее до достижения кодом рассогласования δр значения δп1<|δp|≤ δп2, при котором подают на электродвигатель электромеханического привода усиленное напряжение U2 соответствующей коду рассогласования δр полярности, чем приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, а при совпадении кодов δХ и δу с заданной точностью ± δп1, то есть |δр|≤δп1, формируют в электродвигателе электромеханического привода ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала электродвигателя, останавливают вращение выходного вала редуктора и вала дискретного датчика угла электромеханического привода, при этом ток торможения определяется дифференциальным уравнением

где I - ток торможения; t - время; R - активное сопротивление обмоток электродвигателя; L - индуктивность обмоток электродвигателя; Kэ - коэффициент электромагнитной скоростной связи; Ω - угловая скорость вращения вала электродвигателя.

При таком способе управления цифровой электромеханической следящей системой автоколебания выходного вала электромеханического привода при значительных позиционной или постоянно действующей нагрузках, а также при работе в условиях действия вибраций и ударов, осуществляются за счет функционирования электродвигателя при минимальном напряжении питания, в результате чего скорость движения выходного вала электромеханического привода перед остановом снижается. Это приводит к уменьшению забросов выходного вала электромеханического привода за уровень, определяемый дискретностью команды, и к повышению плавности процесса регулирования цифровой электромеханической следящей системой. Как следствие, потребляемые токи электромеханического привода снижаются пропорционально снижению напряжения питания электродвигателя.

Так как заявленная совокупность существенных признаков способа позволяет обеспечить технический результат, то заявленный способ соответствует критерию "изобретательский уровень".

Суть способа поясняется с помощью фигуры, на которой изображена блок-схема цифровой электромеханической следящей системы с электромеханическим приводом, на которой изображены:

1 - формирователь командного кода (ФКК);

2 - автономное вычислительное устройство (АВУ);

3 - блок определения сигнала рассогласования (БОСР);

4 - релейное пороговое устройство (РПУ);

5 - преобразователь кода Грея в двоичный код (ПКГ);

6 - усилительно-преобразовательное устройство (УПУ);

7 - электромеханический привод (ЭМП);

8 - электродвигатель (ЭД);

9 - редуктор (Р);

10 - дискретный датчик угла ДДУ;

δГ - двоичный семиразрядный код Грея;

δХ - двоичный семиразрядный код, соответствующий требуемому положению выходного вала электромеханического привода в соответствии с циклограммой работы цифровой электромеханической следящей системы;

δУ - двоичный семиразрядный код сигнала обратной связи;

δр - двоичный код рассогласования;

δп2 и δп3 _ двоичные коды переключения режима управления электродвигателем;

δп1 - двоичный код точности поддержания требуемого положения.

В такой цифровой электромеханической системе БОСР 3 может быть выполнен на базе известных микросхем полусумматоров или полных сумматоров [3], при этом функции сравнения можно обеспечить за счет применения известных схем, реализующих функции равенства, строгого и нестрогого неравенства [4]. ПКГ 5 может быть выполнен на базе известных микросхем арифметико-логических элементов [3]. РПУ 4 может быть выполнено на базе мультиплексора [3], электромагнитных реле и делителей напряжения. УПУ 6 может быть выполнен на базе известных усилителей постоянного тока, например, на основе операционных усилителей [5].

При включении цифровой электромеханической следящей системы преобразуют двоичный код Грея δГ ДДУ 10 ЭМП 7 с помощью ПКГ 5 в двоичный код обратной связи δу. Сравнивают командный двоичный код от ФКК 1 δХ, соответствующий требуемому положению выходного вала ЭМП 7 в соответствии с циклограммой работы цифровой электромеханической следящей системы, с двоичным кодом обратной связи δу в БОСР 3 АВУ 2 и формируют в нем двоичный код рассогласования δр. Сравнивают код рассогласования δр с заданной величиной кода точности поддержания требуемого положения δп1 и с заданными величинами кодов переключения режима управления электродвигателями δп2 и δп3 в РПУ 4 АВУ 2. При |δp|>δп3 преобразуют двоичный код рассогласования δр в напряжение, соответствующее коду рассогласования δр полярности в РПУ 4 АВУ 2, усиливают его в УПУ 6 до значения U3, и подают на ЭД 8, которым приводят во вращение вал Р 9 и вал ДДУ 10 ЭМП 7 в требуемом направлении.

При δп2<|δр|≤δп3 преобразуют двоичный код рассогласования δр в напряжение, соответствующее коду рассогласования δр полярности в РПУ 4 АВУ 2, усиливают его в УПУ 6 до значения U2, и подают на ЭД 8, которым приводят во вращение вал Р 9 и вал ДДУ 10 ЭМП 7 в требуемом направлении.

При δп1<|δр|≤δп2 преобразуют двоичный код рассогласования δр в напряжение, соответствующее коду рассогласования δр полярности в РПУ 4 АВУ 2, усиливают его в УПУ 6 до значения U1, и подают его на ЭД 8, которым приводят во вращение вал Р 9 и вал ДДУ 10 ЭМП 7 в требуемом направлении.

При совпадении кодов δХ и δу с заданной точностью ±δп1, то есть |δp|≤δп1, прекращают подачу на ЭД 8 ЭМП 7 напряжения и в нем формируют ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала ЭД 8, останавливают вращение выходного вала Р 9 и вала ДДУ 10 ЭМП 7, при этом ток торможения определяется дифференциальным уравнением

где I - ток торможения; t - время; R - активное сопротивление обмоток электродвигателя; L - индуктивность обмоток электродвигателя; Kэ - коэффициент электромагнитной скоростной связи; Ω - угловая скорость вращения вала электродвигателя.

Таким образом, заявленный способ управления цифровой электромеханической следящей системой позволяет при значительных позиционной или постоянно действующей нагрузках, а также при работе ЭМП 9 в условиях действия вибраций и ударов, уменьшить за счет функционирования при минимальном напряжении питания ЭД 8, скорость движения выходного вала ЭМП 7, что приводит к уменьшению забросов выходного вала ЭМП 7 за уровень, определяемый дискретностью команды, а, значит, и к повышению плавности процесса регулирования цифровой электромеханической следящей системой.

Как следствие потребляемые токи ЭМП 7 снижаются пропорционально снижению напряжения питания ЭД 8 ЭМП 7.

С одной стороны, чем больше в такой цифровой электромеханической следящей системе пороговых значений напряжения питания ЭД 8, тем выше плавность процесса регулирования, однако с другой стороны при этом увеличивается суммарная масса РПУ 4 АВУ 2 и снижается его надежность, что приводит к увеличению массы и снижению надежности всей системы. Поэтому выбор количества пороговых значений напряжения питания электродвигателя электромеханического привода U1, U2, …, Un-1, Un, и значений соответствующих им кодов переключения режима управления электродвигателем δп1, δп2, …, δпn-1, δпn является предметом оптимизации под конкретное техническое задание.

Литература

1. Батоврин А.А., Дашевский П.Г., Лебедев В.Д. и др. Цифровые системы управления электроприводами. Л., «Энергия», 1977. 256 с. - аналог.

2. Белицкий Д.С, Жарков М.Н., Стоялов В.В., Шутенко В.И. / Электромеханический привод в системе управления режимами жидкостных ракетных двигателей. // Известия Академии наук. Теория и системы управления, 1996, №1, с. 118-124 - прототип.

3. Справочник по интегральным микросхемам / Б.В. Тарабрин, С. В. Якубовский, Н.А. Барканов и др. под ред. Б.В. Тарабрина. -2-е изд. Перераб. и доп.М.: Энергия, 1981.

4. Токхейм Р. / Основы цифровой электроники. Пер. с англ. М.: Мир, 1988.

5. Алексеенко А.Г. и др. Применение прецизионных аналоговых микросхем / А.Г. Алексеенко, Е.А. Коломберт, Г.И. Стародуб. 2-е изд. перераб. и доп. М.: Радио и связь, 1983.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 92.
24.01.2020
№220.017.f8ec

Способ контроля эффективности солнечной батареи космического аппарата

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. К моменту выхода КА на...
Тип: Изобретение
Номер охранного документа: 0002711823
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f919

Способ определения орбиты космического аппарата с аппаратурой для съёмки подстилающей поверхности

Изобретение относится к способам слежения за полётом космических аппаратов (КА). Способ включает определение по ортотрансформированным снимкам подстилающей поверхности (ПП) географических координат точек областей этой ПП, над которыми находится КА. Снимки делают при последовательно меняющих...
Тип: Изобретение
Номер охранного документа: 0002711834
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f93e

Способ управления транспортной космической системой при перелёте космического корабля с окололунной орбиты на околоземную орбиту

Изобретение относится к транспортировке полезных грузов при перелетах космического корабля (КК), например, с окололунной на околоземную орбитальную станцию. Способ включает стыковку КК с разгонным блоком (РБ) и выдачу с помощью РБ импульса для перелета с окололунной орбиты к Земле по пролетной...
Тип: Изобретение
Номер охранного документа: 0002711822
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f98f

Способ привязки выполненных с космического аппарата снимков земной поверхности

Изобретение относится, главным образом, к спутникам для наблюдения Земли. Привязка включает измерение параметров орбиты спутника, ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Через заданное время после первого снимка выполняют второй снимок...
Тип: Изобретение
Номер охранного документа: 0002711775
Дата охранного документа: 22.01.2020
25.01.2020
№220.017.f9dc

Дублированный электронасосный агрегат

Изобретение может быть использовано в системах терморегулирования изделий космической техники. Дублированный электронасосный агрегат содержит корпус с входным и выходным штуцерами и установленные в нем два центробежных электронасоса. Выходные полости электронасосов сообщены с выходным штуцером...
Тип: Изобретение
Номер охранного документа: 0002711889
Дата охранного документа: 23.01.2020
31.01.2020
№220.017.fb37

Способ контроля эффективности солнечной батареи космического аппарата

Изобретение относится к эксплуатации солнечной батареи (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. На световой части витка...
Тип: Изобретение
Номер охранного документа: 0002712358
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fb42

Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников

Группа изобретений относится к системам навигации космических аппаратов (КА). В способе определяют углы между осями приемных антенн и направлениями на навигационные спутники (НС) с частотным разделением сигналов, включающие пары спутников, излучающих радиосигналы на одной частоте, определяют...
Тип: Изобретение
Номер охранного документа: 0002712365
Дата охранного документа: 28.01.2020
04.02.2020
№220.017.fd29

Способ привязки выполненных с орбитального космического аппарата снимков подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ привязки выполненных с орбитального космического аппарата (КА) снимков подстилающей поверхности включает ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Дополнительно в течение заданного интервала...
Тип: Изобретение
Номер охранного документа: 0002712781
Дата охранного документа: 31.01.2020
23.02.2020
№220.018.04c6

Планетарный редуктор

Изобретение относится к машиностроению. Планетарный редуктор содержит входной вал, первый сателлит с первой и второй шестернями, первый неподвижный корпус, выходной вал, второй неподвижный корпус, цевки, размещенные в корпусах и выходном валу, второй сателлит с первой и второй шестернями, на...
Тип: Изобретение
Номер охранного документа: 0002714990
Дата охранного документа: 21.02.2020
26.03.2020
№220.018.1039

Способ управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к эксплуатации оборудования космического корабля (КК). Способ включает определение относительного положения объекта наблюдения на подстилающей поверхности, КК и аппаратуры наблюдения (АН). Дополнительно по определяемым параметрам движения и ориентации КК определяют, у...
Тип: Изобретение
Номер охранного документа: 0002717614
Дата охранного документа: 24.03.2020
Показаны записи 21-22 из 22.
21.05.2023
№223.018.6863

Система электроснабжения космического корабля ракетно-космического комплекса

Изобретение относится к системам энергоснабжения и может быть использовано при проектировании и создании систем электроснабжения космических кораблей (КК). Технический результат заключается в компенсации потерь электроэнергии на удержание маршевого двигателя КК в нейтральном положении в...
Тип: Изобретение
Номер охранного документа: 0002794520
Дата охранного документа: 20.04.2023
23.05.2023
№223.018.6ca7

Индуктивно-емкостной энергетический элемент (варианты)

Изобретение относится к области электротехники. Индуктивно-емкостной энергетический элемент содержит центральный слой гетерогенной субстанции. По внешней поверхности центрального слоя парно противоположно установлено четное количество других, отличных от центрального слоя и друг от друга слоев...
Тип: Изобретение
Номер охранного документа: 0002777490
Дата охранного документа: 04.08.2022
+ добавить свой РИД